
	

14-­‐May-­‐2013	
 Introduction	
 to	
 the	
 artdaq-­‐demo	
 1	

General Introduction

The artdaq data acquisition toolkit currently provides functionality for data transfer,
event building, event reconstruction and analysis (using the art analysis framework),
process management, system and process state behavior, control messaging, local
message logging (status and error messages), DAQ process and art module configuration,
and the writing of event data to disk in ROOT format. Functionality that will be
available soon includes centralized message logging and display, and DAQ monitoring
(the health and performance of the DAQ system).

Future additions to artdaq are expected to include a graphical interface to the run control
and state management facilities, management and archiving of configurations, and
infrastructure for remote control and monitoring. In addition, all future enhancements to
the art framework and its utilities will naturally be available to users of artdaq since art
is a core component of the toolkit.

The toolkit is designed to provide many of the core functions that are needed in a DAQ
system and allow experimenters to focus on the components that are specific to their
experiment. These experiment-specific components are

• the software that configures and reads the data from the experiment-specific
hardware,

• the analysis modules that run inside the art framework to reconstruct, compress,
and/or filter the event data,

• the data quality monitoring algorithms that verify the quality of the data.

The artdaq-demo package demonstrates the features that are currently available in artdaq
using a small test system that includes simulated generation of data fragments and a
Huffman compression module.

Introduction to the Demo System

The demo system includes scripts to start, configure, and run a small 2-by-2 system on a
single Linux host. As shown in the figure below, this sample system has two
BoardReader processes and two EventBuilder processes. (The demo system can be
extended to demonstrate any number of BoardReader and EventBuilder processes, and to
demonstrate a system that is distributed across multiple Linux hosts.)

In a system with real hardware modules, BoardReader processes are responsible for
configuring the modules and reading data from them, and in the current design the model
is to have one BoardReader process per front-end card. (BoardReaders are also
responsible for sending the data fragments that are read from the hardware modules to the
EventBuilder processes.) BoardReader processes make use of FragmentGenerator
instances to interact with the hardware. FragmentGenerator instances are instantiations
of C++ classes that are experiment-specific and implement the
artdaq::FragmentGenerator interface. These can either communicate with real hardware

	

14-­‐May-­‐2013	
 Introduction	
 to	
 the	
 artdaq-­‐demo	
 2	

or provide simulated data. In the demo system, the FragmentGenerator instances
generate simulated CAEN V1720 digitizer data.

The EventBuilder processes build complete events using instances of the EventStore
class and pass them to the art framework. In an experiment DAQ, the art framework can
be configured to run analysis modules that are written by members of the experiment or
are part of the core art suite. In the demo, several sample modules are provided, and the
standard example uses a module that compresses the digitizer data.

Description of the Sample System

The instructions for running the sample demo system (available on the artdaq-demo
Redmine Wiki) include the following steps:

• start the MPI program – This uses the Process Management Tool that is part of
artdaq and the mpirun program that is part of MPI.

• initialize (configure) the system – This step sends configuration strings in FHICL
format to the DAQ processes using XMLRPC.

• start a run – This step sends the start command and the run number to the DAQ
processes using XMLRPC. The commands are sent in a well-defined order so
that downstream processes are ready when the data flow is started.

• stop a run – This step sends the stop command to the DAQ processes using
XMLRPC. In this case, upstream processes are notified first so that the flow of
data is stopped at the front-end and all events are drained from the system.

• shutdown the system – The shutdown command is sent using XMLRPC, and the
MPI program is stopped.

• examine the events in one or both of the disk files that are written (one per
EventBuilder) – An art module is used to display data from the events.

The goal of the sample system is to demonstrate the features of art and artdaq, including
the following:

	

14-­‐May-­‐2013	
 Introduction	
 to	
 the	
 artdaq-­‐demo	
 3	

• data transfer using MPI – The demo system software is built against an Ethernet
version of the MPI library so that tests on multiple nodes can be run without
needing specialized hardware (such as an Infiniband network).

• assembly of the data fragments from the two BoardReader processes into full
events – The EventBuilders write complete events to disk. When the data on disk
is examined with the “event dump” module, both fragments are shown for each
event.

• compression of the digitizer data by a module in the art framework – As
described in the instructions for running the demo, the selection of whether the
compression algorithm is run can be made at configuration time. The event dump
utilities, which are used to examine the data on disk, de-compress the data, if
needed, before displaying information about the data in each event.

• startup and control of the MPI program (the set of BoardReader and EventBuilder
processes) using the artdaq Process Management Tool

• state behavior – A subset of the state transitions that are supported by artdaq are
shown in the sample system demo. These are initialization (configuration), start
(begin run), stop (end run), and shutdown.

• control of the DAQ processes using XMLRPC control messages. The control
commands are sent to the DAQ processes by scripts that were developed as part
of artdaq. These scripts use the xmlrpc client program.

• configuration of the DAQ processes and the art framework using FHICL
configuration strings – In the sample system, the configuration strings are
generated automatically by the scripts which help to run the system. Interested
users can see the contents of these strings in the console output when they are
echo-ed by the applications that receive them.

• writing of event data to disk files in ROOT format

Next steps

There are several useful exercises that interested users of the demo system may want to
try. These include the following:

• create one or more new types of simulated fragments and include those in the
sample system

• create one or more additional art modules and run them in the sample system
• run any number of BoardReader processes to create fragments and run any

number of EventBuilders (within the resource limits of the single PC).
• run the BoardReader and EventBuilder processes on multiple PCs (that all have

equivalent access to the necessary binaries and libraries on disk)
Instructions for doing these exercises will be added to the Redmine Wiki soon.

Also, additional documentation will be provided for the demo, including the following:

• a description of the configuration options that are available for the DAQ processes
and the art modules

• a description of the FragmentGenerator interface and instructions for creating
C++ classes that implement it

• other material as needed

	

14-­‐May-­‐2013	
 Introduction	
 to	
 the	
 artdaq-­‐demo	
 4	

Reference Material

artdaq-demo Redmine Wiki:

– https://cdcvs.fnal.gov/redmine/projects/artdaq-demo/wiki/Wiki
artdaq talks and paper

– available from the Redmine Wiki page
art Redmine Wiki

– https://cdcvs.fnal.gov/redmine/projects/art/wiki

