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Transportation Chain in Geant4
Introduction

To propagate a charged particle inside a magnetic field, we solve its
equation of motion using numerical methods.

Geant4 uses the numerical methods of Runge-Kutta class to solve the
Ordinary Differential Equations (ODE).

Each step may be divided in smaller steps.

Geant4 breaks up the curved path into linear chord segments.

Chord segments are determined so that they closely approximate the
curved path (if the current error is large, the path uses more
segments) in order to control the accuracy of volume intersection.

Images to illustrate the parameters effect were taken from: ”Geant 4, Detector Description: EM Fields”, J.Apostolakis
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Transportation Chain in Geant4
Visual Analysis

Using the chords, G4Navigator is interrogated to check if a volume
boundary was crossed.

User can set the accuracy of the volume intersection by setting the
deltaChord parameter, which is to be compared with the missed
distance.

If the missed distance is greater than deltaChord , the path is broken
into more linear chords.
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Transportation Chain in Geant4
Parameters Involved

deltaInt controls the accuracy of the
intersection with a volume boundary. It limits
a bias on the algorithm (intersection point
always inside of the curve).

deltaOneStep (δoneStep) controls the accuracy
for the endpoint of an ordinary integration
step (not crossing any boundary).

stepMax controls the maximum step length.

epsilon (ε) controls the error after a substep

due to numerical integration. ε =
δoneStep

h
(h ≤ stepMax is the current step length).

epsilonMin and epsilonMax may override ε.
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Transportation Chain in Geant4
Runge-Kutta

We describe here the Runge-Kutta method of 4th order, used by Geant4.

Let ẏ = f (t, y) and y(t0) = y0 be our initial problem.

A step size th > 0 should be picked, which defines
yn+1 = yn + th

6 (k1 + 2k2 + 2k3 + k4)
tn+1 = tn + th

The ki represent the increment based on the local slope (derivative)
which is given by f , calculated at different points. They can be
explicitly calculated.
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Introduction to QSS
Motivating Example

Consider the following second order system:

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)
(1)

We can introduce an approximation by state quantization:

ẋ1(t) = floor(x2(t)) = bx2(t)c = q2(t)

ẋ2(t) = −floor(x1(t)) = −bx1(t)c = −q1(t)
(2)

x1(t) and x2(t) correspond to the original state variables, whereas
q1(t) and q2(t) correspond to the quantized state variables.
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Introduction to QSS
Simulation Explained Intuitively

Equation

ẋ1(t) = bx2(t)c = q2(t)
ẋ2(t) = −bx1(t)c = −q1(t)

Initial Conditions

x1(0) = 4.5
x2(0) = 0.5
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Introduction to QSS
Simulation Explained Intuitively

Solution for the Quantized System
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QSS Explained
State Quantization

Quantized State System (QSS) (Kofman E., 2001)

Family of numerical methods based on the principle of state
quantization.
Quantize the state variables with discrete quanta in place of
partitioning time in discrete steps.
Implemented in several general purpose Modeling and Simulation
(M&S) tools (most advanced: PowerDEVS).
Recently also as a stand-alone QSS numerical solver (which we have
already started using!).
Step is now a misleading term: QSS are inherently asynchronous and
step-less methods.

Nicolás B. Ponieman (UBA) Fermilab, October 29th 2015 15 / 54



QSS Explained
More Complex Example

ODE

ẋ(t) = v(t)
v̇(t) = − k

mx(t)− b
mv(t) + 1

mF (t)

QSS

ẋ1(t) = q2(t)
ẋ2(t) = − k

mq1(t)− b
mq2(t) + 1

mF (t)

For the simulation, we take m = b = k = 1.
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QSS Explained
More Complex Example

QSS1 Solution with quantum size ∆Q = 0.01
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QSS Explained
More Complex Example

QSS1 Solution with quantum size ∆Q = 0.05
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QSS Explained
More Complex Example

QSS1 Solution with quantum size ∆Q = 0.1
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QSS Explained
Advantages and Disadvantages

We have presented the first order accurate QSS (QSS1)

Advantages:

Stability and Global Error Bound (at least for linear systems)
Decentralized dynamics (decoupled, independent computation of
changes in state variables) which makes it naturally asynchronous.
Efficiently simulates heavily discontinuous systems
Dense polynomial output, with trivial detection and handling of
discontinuities.

Disadvantages

Oscillations may appear. Problems with stiff systems
Solution: Linearly Implicit LIQSS family methods
The Quantum must be chosen
Solution: Logarithmic (adaptive) Quantum controls the relative error
automatically
The # of computational steps grows linearly with precision
Solution: Higher order methods QSS2, QSS3, QSS4
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QSS Explained
Simple Realistic Model for Exploration

To start studying the numerical methods, we focus on a simple
example with a well defined trajectory and where the analytical
solution is known.
This will enable us to have a better intuition of the results.
It will also enable us to compare our simulations with the real solution.
Model: charged particle in a static, homogeneous magnetic field in ẑ .

ODE

~̇x(t) = ~v(t)
m d

dt (γ d~x
dt ) = q(~v × ~B)

QSS

ẋ(t) = q3(t)
ẏ(t) = q4(t)

v̇x(t) = qB
mγq4(t)

v̇y (t) = − qB
mγq3(t)

Simple Model for Exploration

Analytical solution: a circle in the
x-y plane.
~x0 = (0, 0, 0)
~v0 = (0.999c)x̂
~B = Bẑ = (1.0tesla)ẑ
Radius = 38.085mm
Period = 0.799ns
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QSS Explained
Simple Realistic Model for Exploration - Simulation Results
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QSS Explained
Simple Realistic Model for Exploration - Simulation Results
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QSS vs Runge-Kutta

QSS

Error is globally bounded.

Dense output (with
polynomials of nth order).

Only two parameters to tune.

Naturally asynchronous,
potentially good for
parallelization.

Runge-Kutta

Error is locally bounded.

Non dense output.

Multiple parameters to tune.
Not so easy to understand how
each parameter will affect the
simulation.

Parallelization requires
changing the algorithm
considerably.

Nicolás B. Ponieman (UBA) Fermilab, October 29th 2015 24 / 54



Outline

1 Transportation Chain in Geant4
Introduction
Parameters Involved
Runge-Kutta

2 Quantized State System
Introduction to QSS
QSS Explained
QSS vs Runge-Kutta

3 Exploring Geant4 Parameters
Introduction
Varying epsilon
Varying stepMax
Varying deltaChord

4 Exploring QSS Parameters

5 Geometry crossings - Performance Comparison

Nicolás B. Ponieman (UBA) Fermilab, October 29th 2015 25 / 54



Exploring Geant4 Parameters
Introduction

We identified and focused on a set of Geant4 parameters which can
be controlled and should impact the simulation time and numerical
error.

We ran some experiments to verify if the impact of these parameters
in our simple example is the expected one.

Understanding how the value of these parameters impacts on the
simulation error and time will enable us to compare with QSS in a
fair way: compare one setup for each method where the error is
similar, and see which one performs better in terms of time.

Fixed Parameters

deltaOneStep = 1.0E -2mm

deltaInt = 1.0E -5mm

Experiments Varying Parameters

epsilon

stepMax

deltaChord
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Varying epsilon

Fixed Parameters

deltaChord = 0.25mm

stepMax = 20mm

epsilonMin = epsilonMax = epsilon

r RMSE =
√

1
N

∑N
i=1(xi -xpred)2 + (yi -ypred)2

r RMSE is the Root Mean Squared Error for the position.

Experiment

Vary epsilon from 1E -3 to 1E -12 and measure the impact on the
simulation time and simulation error.

We expect the simulation time to increase when epsilon becomes
smaller (searching for more accuracy), whereas the error should
decrease.
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Varying epsilon
Results

r error[mm]

epsilon Simulation
Time [s]

RHS evalua-
tion steps

Output
Steps

Ratio 1 km 100 m 10 m 1 m 100 mm

1.0E-3 13.72 1.65e7 500001 33 1.73E+0 1.73E-1 1.73E-2 1.72E-3 1.26E-4

1.0E-4 13.72 1.65e7 500001 33 1.73E+0 1.73E-1 1.73E-2 1.72E-3 1.26E-4

1.0E-5 13.72 1.65e7 500001 33 1.73E+0 1.73E-1 1.73E-2 1.72E-3 1.26E-4

1.0E-6 21.81 3.85e7 500001 76 1.74E+0 1.74E-1 1.74E-2 1.73E-3 1.30E-4

1.0E-7 27.98 6.05e7 500001 121 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4

1.0E-8 41.05 1.04e8 500001 207 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4

1.0E-9 55.83 1.59e8 500001 318 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4

1.0E-
10

85.94 2.69e8 500001 537 1.74+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4

1.0E-
11

139.99 4.56e8 500001 917 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4

1.0E-
12

230.22 7.86e8 500001 1572 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4
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Varying epsilon
x Error and vx Error vs distance
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Varying epsilon
r Error and v Error vs distance

We define r Error as the distance between the simulated position and
the circle.
Similarly, we define v Error as the difference between the simulated
velocity and the theoretical (which should be constant).

Whereas both error oscillate similarly in all the trajectory around the
same value, v Error is always negative, i.e. the particle is travelling
slower in our simulations!
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Varying epsilon
r Error and v Error histograms
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Varying epsilon
Conclusions

The simulation time increases when epsilon becomes smaller, as
expected.

The simulated velocity is always smaller than the theoretical one.

The error gets larger as the particle travels. This is expected for
systems with exact solutions.

The error when compared to the analytical solution is not affected
considerably by the variation of epsilon. This invariance is
counterintuitive.

We made several experiments to try to explain this behavior, but did
not succeed.

Runge-Kutta may be too accurate for this simple example, so that
epsilon may not be controlling the steps at all.
TODO: measure the accuracy of the individual Runge-Kutta steps to
validate the previous hypothesis.
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Varying stepMax

Fixed Parameters

deltaChord = 0.25mm

epsilonMin = epsilonMax = 1.0E -3

Experiment

Vary stepMax and measure the impact on the simulation time and
simulation error.

Values[mm]: 0.2, 1, 2, 5, 10, 20, 50, 100, 150, 200

We expect the simulation time to increase when stepMax
becomes smaller (as we may be forcing more steps), whereas the
error should decrease.
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Varying stepMax
Results

r error[mm]

stepMax Simulation
Time [s]

RHS evalua-
tion steps

Output
Steps

Ratio 1 km 100 m 10 m 1 m 100 mm

0.2 814.81 5.50e8 ? ? 1.74E+0 1.74E-1 1.74E-2 1.76E-3 1.67E-4

1 171.02 1.10e8 1000000111 1.74E+0 1.74E-1 1.74E-2 1.76E-3 1.66E-4

2 88.19 5.50e7 5000001 11 1.74E+0 1.74E-1 1.74E-2 1.76E-3 1.64E-4

5 33.12 2.20e7 2000001 11 1.74E+0 1.74E-1 1.74E-2 1.75E-3 1.58E-4

10 21.90 2.20e7 1000001 22 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.45E-4

20 13.79 1.65e7 500001 33 1.73E+0 1.73E-1 1.73E-2 1.72E-3 1.26E-4

50 8.31 1.32e7 200001 66 1.71E+0 1.71E-1 1.71E-2 1.66E-3 6.91E-5

100 7.17 1.32e7 100001 132 1.68+0 1.68E-1 1.67E-2 1.56E-3

150 6.84 1.32e7 66668 198 1.64E+0 1.64E-1 1.64E-2 1.58E-3

200 6.38 1.26e7 50001 252 1.61E+0 1.61E-1 1.59E-2 1.36E-3
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Varying stepMax
Conclusions

The simulation time increases when stepMax becomes smaller, as
expected.

The error gets larger as the particle travels. This is expected for
systems with exact solutions.

We observe the error changes when varying stepMax , but in a
counterintuitive way: for smaller values of stepMax the error is larger.
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Varying deltaChord

Fixed Parameters

stepMax = 20mm

epsilonMin = epsilonMax = 1.0E -3

Experiment

Vary deltaChord and measure the impact on the simulation time
and simulation error.

Values[mm]: 0.01, 0.05, 0.25, 0.5, 1.0

We expect the simulation time to increase when deltaChord
becomes smaller (as we may be forcing more steps), whereas the
error should decrease.
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Varying deltaChord
Results

r error[mm]

deltaChordSimulation
Time [s]

RHS evalua-
tion steps

Output
Steps

Ratio 1 km 100 m 10 m 1 m 100 mm

0.01 3.9 6.60e6 ?
50001

132 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4

0.05 2.3 3.30e6 50001 66 1.74E+0 1.74E-1 1.74E-2 1.74E-3 1.30E-4

0.25 1.5 1.65e6 50001 33 1.73E+0 1.73E-1 1.73E-2 1.72E-3 1.26E-4

0.5 1.3 1.10e6 50001 22 1.70E+0 1.70E-1 1.70E-2 1.68E-3 1.14E-4

1.0 1.3 1.10e6 50001 22 1.60E+0 1.60E-1 1.59E-2 1.52E-3 5.27E-5
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Varying deltaChord
Conclusions

The simulation time increases when deltaChord becomes smaller, as
expected.

The error gets larger as the particle travels. This is expected for
systems with exact solutions.

We observe the error changes when varying deltaChord , but in a
counterintuitive way: for smaller values of deltaChord the error is
larger.
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Varying deltaQRel and deltaQMin

Settings

The simulation was done with the QSS3 method.

deltaQMin = deltaQRel ∗ 1E -3

This simulations were done using PowerDevs

Experiment

Vary deltaQRel (and deltaQMin accordingly) and measure the
impact on the simulation time and simulation error.

Values for deltaQRel : 1E -3, ..., 1E -7

We expect the simulation time to increase when deltaQRel
becomes smaller (as we are forcing a better accuracy). In fact, we
expect it to increase with the cubic root of the decrease factor.

We expect the error to decrease when we make deltaQRel smaller.
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Varying deltaQRel and deltaQMin
Results

r error[mm]

DeltaQ Simulation
Time [s]

PD evalua-
tion steps

1 km 100 m 10 m 1 m 100 mm

1.0E-3 1.33 2.40e6 2.17E+1 6.11E+0 7.48E-1 8.17E-2 7.27E-3

1.0E-4 8.89 1.42e7 6.44E+0 7.89E-1 8.28E-2 8.65E-3 8.32E-4

1.0E-5 16.3 3.08e7 1.09E+0 1.13E-1 1.14E-2 1.18E-3 1.09E-4

1.0E-6 35.6 6.64e7 7.68E-1 7.69E-2 7.71E-3 7.64E-4 8.00E-5

1.0E-7 77.6 1.43e8 7.64E-1 7.65E-2 7.62E-3 7.67E-4 7.64E-5
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Varying deltaQRel and deltaQMin
Error in the Position in x̂

: (a) DeltaQRel=1E-3 : (b) DeltaQRel=1E-4
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Varying deltaQRel and deltaQMin
Error in the Position in x̂

: (c) DeltaQRel=1E-5 : (d) DeltaQRel=1E-6
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Varying deltaQRel and deltaQMin
Conclusions

The simulation time increases when deltaQRel becomes smaller.

It grows with the cubic root of deltaQRel decrease factor, as
expected.

The error grows unbounded as the particle travels. This is expected
when using numerical methods not specifically designed for marginally
stable systems (such as our simple model or the armonic oscillator
previously selected as the baseline case-study).

We observe the error is reduced when we decrease the value of
deltaQRel , as expected.
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Performance comparison for different numerical methods
Varying number of planes crossed in a period

Settings

We set equispaced rectangles which intersect with the particle
trajectory in the x̂ plane.

We used the G4VPReplica method in Geant4.

We implemented the geometry crossing detection in QSS Solver.

We will use 3 methods for our simulations: QSS3, Geant4, and
DOPRI5. We will also change the parameter which controls the
error in QSS3 and DOPRI5.

DOPRI5 is a Runge-Kutta based implementation which works
within the QSS Solver and which is of 5th order.

We run simulations where the particle crosses a different number
of planes per period: 0, 5, 10, 20, 40, 80, 100, 150, 200.

The goal is to measure the time and error for each simulation.
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Performance comparison for different numerical methods
Raw Simulation Times

Conclusions

- Solver faster
than Geant4
- QSS3 is better
than DOPRI5 to
handle planes.
The latter is
better than
Geant4.
- How much
better?
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Performance comparison for different numerical methods
Simulation Times Ratio (Geant4 as baseline)

Conclusions

- QSS3 seems much
more efficient for large
number of planes
- QSS3 seems two
orders of magnitude
better than Geant4!!
- Is it a fair
comparison?
- We may not be
considering some
overhead on Geant4.
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Performance comparison for different numerical methods
Simulation Times Normalized Ratio (Sn/G4n)/(S0/G40)

Conclusions

- QSS3 is still
between one and two
orders of magnitude
better than Geant4!!
- If time is linear with
the number of planes,
why is the ratio not
constant?
- Let Sn = a1n + a2

and G 4n = b1n + b2

- This plot is expected
if a1n� a2 which is
true.
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Performance comparison for different numerical methods
Simulation Times Difference Ratio (Sn-S0)/(G4n-G40)

Conclusions

- QSS3 is now at least
two orders of
magnitude better than
Geant4!!
- The ratios look more
similar to constants.
- TODO: statistic to
get cleaner plots and
errors.
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Conclusions

All the numerical methods used (modified Runge-Kutta in Geant4,
QSS3 and Dopri5) can correctly simulate our simple model.

In all cases, the predictive power of the methods gets worse with the
distance travelled by the particle.

We understand how to vary parameters in QSS3 to improve the error
of the simulation. We do not know how to do this consistently in
Geant4 yet.

QSS3 deals with geometry crossings in a more efficient way than
Geant4. Our results show it is two orders of magnitude better.

Short term objectives:
Study the impact of deltaInt in Geant4, as it may explain the bad
performance of Geant4 when crossing geometries.
Check how QSS3 would deal with other complex situations: varying
magnetic field, particle decays, etc.

Mid term objectives:
We would also like to implement QSS3 within Geant4.
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Questions?
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