SAM Data Movement Service
Introduction
The SAM Data Movement Service is responsible for replicating and deleting datasets across multiple storage systems.
Definitions
Dataset definition: a SAM dataset definition is a stored metadata query that evaluates to a list of files.
Snapshot: a snapshot is a saved list of specific files that is the result of evaluating a dataset definition at a point in time
Dataset: this term is not specifically used by SAM; users of the system tend to use it to refer to a dataset definition. In this sense a given file might belong to zero, one, or many datasets and there is no efficient method to determine which definitions a file matches. It can also be used to refer to snapshots; again a file may be in any number of snapshots. In this document “dataset” is used for the general concept of a group of files, and dataset definition and snapshot are used for the concrete SAM entities.
Subscription: a subscription is a standing request to replicate a dataset to another location.
General requirements
Dataset replication
The service will provide a method for users and automated systems to request replication of a dataset to a specified storage system. The requester will not have to know in advance where existing copies of the files are – the sources should be chosen automatically for them. The interface to replicate a dataset will be to set up a subscription for it. Subscriptions can be either closed – based on a snapshot that will not change – or open – based on a dataset definition that can be periodically reevaluated to check for additional files. Closed subscriptions can be removed once the entire snapshot has been transferred. Open subscriptions require some type of end condition to determine that they are complete (alternatively they could be left until explicitly removed, although this brings up the danger of their never going away).
Target file paths
For the benefit of potential federated xrootd access, and for consistency in file locations, it would be helpful if the paths were consistent for files. Currently for production data the paths are set using templates for metadata in the F-FTS. This templating functionality can be moved into the central SAMWeb server so that any client can obtain a consistent path this way.[footnoteRef:1] [1: SAMWeb will provide the trailing component of the path; coupled to a site specific prefix this will form the full location.]

Deleting files
There should be a way of removing files from a location. It should also be possible to validate the catalog against what’s actually at the location and reconcile any differences.
API
The API should be a RESTful HTTP interface. Authentication and authorization should be the same as SAM currently supports (X509 client certificates/proxies). Requests and responses should be JSON data (there is no need to support plain text the way many SAM interfaces do).

<base url> represents the access URL of the service, for example it could be something like https://samweb.fnal.gov:8483/sam/dune/dataset_transfer. The actual URL will depend on the implementation details of the service and its deployment.
Values in italics are tentative ideas that can be left to a later phase of implementation.

Dataset replication
Create a subscription

	POST
	<base url>/subscriptions

Parameters
	defname
	The SAM definition name
	No default; one of defname or snapshot_id must be given

	snapshot_id
	The SAM snapshot id
	No default; one of defname or snapshot_id must be given

	update_interval
	For open subscriptions, the interval at which it should check for new files
	Default is no check

	destination
	The destination path
	Must be given

	priority
	A priority value
	

Return value: JSON object
	subscription_id
	The subscription ID

List current subscriptions

	GET
	<base url>/subscriptions

Parameters
	created_before
	Filter creation date
	

	created_after
	Filter creation date
	

	user
	The user who created the subscription
	

Return value: JSON list of objects
	subscription_id
	The subscription ID

	dataset_id
	The ID of the dataset

	dataset_name
	The name of the dataset

	snapshot_id
	The snapshot ID (if specified)

	user
	The user who created the subscription

	total_files
	The total number of files

	current_files
	The number of files at the target location

	update_interval
	The interval for checking dataset changes, if specified

	active
	1 if the subscription is active; 0 otherwise

Get details of a specific subscription

	GET
	<base url>/subscriptions/<subscription id>

Return value: JSON object
	subscription_id
	The subscription ID

	dataset_id
	The ID of the dataset

	dataset_name
	The name of the dataset

	snapshot_id
	The snapshot ID (if specified)

	user
	The user who created the subscription

	total_files
	The total number of files

	current_files
	The number of files at the target location

	update_interval
	The interval for checking dataset changes, if specified

	active
	1 if the subscription is active; 0 otherwise

	
	[Other values of interest?]

Terminate a subscription

	DELETE
	<base url>/subscriptions/<subscription id>

This will stop further activity for a subscription and mark it as inactive
Interactive user interface and monitoring
An interactive web page will be provided. This will allow viewing of the overall state of the system and allow suitably authorized users to add or terminate subscriptions. Monitoring data will also be sent to FIFEMon.
Design and implementation
As far as possible the implementation should leverage existing SAM features. The SAM project capability provides a way of getting an optimized list of files from a dataset, so this should be used to provide the core functionality.

The major state transitions for a subscription are shown in Figure 1 (most error handling is not included). Each active subscription will run in parallel, although throttling or prioritization may be necessary.

The SAM project will return a source URL for each file. The service must invoke a protocol specific copy command to perform the actual file transfer operation. This could be done directly, but an option is to make use of the LCG FTS service and delegate performing the transfers to it. This will require some extra coordination to batch up transfers for dispatch to the LCG FTS.
[image:]
[bookmark: _Ref465070123][bookmark: _Ref465070194]Figure 1 – state transitions for a subscription
image1.emf

SAM project

N in parallel

Data transfer service

New subscription

Snapshot definition

Start project

Start N consumers

End project

Count number of files
not already at destination

Get next file

No more files
in project

Dispatch file transfer

Next file
URL

Wait for transfer
to complete

Update file
location
in DB

Success

Release file

Error

Create dataset definition
for files not at destination

Remaining files
to transfer > 0

Wait for update
interval

No remaining files;
open subscription

End

No remaining files;
closed subscription

Check for new
files in snapshot

New files

No new
files

Interval
reached

Reached
termination
condition

