PROGRAMMER'S
GUIDE
AGILENT ACQIRIS
INSTRUMENTS

~ Agilent Technologies

Manual Part Number
U1092-90003

Edition

E-Revd, November 2009

The information in this document is subject to change without notice and may not be construed in any way as a
commitment by Agilent Technologies, Inc. While Agilent makes every effort to ensure the accuracy and contents
of the document it assumes no responsibility for any errors that may appear.

All software described in the document is furnished under license. The software may only be used and copied in
accordance with the terms of license. Instrumentation firmware is thoroughly tested and thought to be
functional but it is supplied “as is” with no warranty for specified performance. No responsibility is assumed for
the use or the reliability of software, firmware or any equipment that is not supplied by Agilent or its affiliated
companies.

You can download the latest version of this manual from http://www.agilent.com/ by clicking on Manuals in the
Technical Support section and then entering a model number. You can also visit our web site at
http://www.agilent.com/find/acqiris. At Agilent we appreciate and encourage customer input. If you have a
suggestion related to the content of this manual or the presentation of information, please contact your local
Agilent Acqgiris product line representative or the dedicated Agilent Acqiris Technical Support
(ACQIRIS_SUPPORT@agilent.com).

Acqiris Product Line Information

USA (800) 829-4444
Asia - Pacific 61 3 9210 2890

Europe 41 (22) 884 32 90

© Copyright Agilent 2009

Programmer’s Guide Page 2 of 66

CONTENTS

L. INTRODUGCTION. ...ttt ettt oot e e ettt e ettt e e e ettt eeaamteeaaameeee e aaseeeamsteeesamseeeeanneeeaannseaeaasseeesaneeaens 5
O IV =TS = Vo [N (0 I 1 1= T 5.
R O £ To T TS = Vg U |
1.3. Conventions Used in This Manual
1.4. Warning Regarding MeAICaAl USEcoeiiiii ettt ettt e e e e e e e e e e e e e s e e e e s s s e s s nnenes
BT VL= 14 = T o 2RO UTUPP PPN
1.6. Warranty and Repair Return Procedure, Assistance and SUppQrt............ccooeeeeeeieeeeeeeeeccccecceeee 6
1.7, SYSIEM REQUITEMENTSuiiiiiiiii ittt ieeetee e et te e e e s s e et e e e e s s s bt e eeaeaasstbe et eeeesannsbebeeteeeennneeeeeeeeennnes 6

2. PROGRAMMING ENVIRONMENTS & GETTING STARTED......... tiiiiiieiiiie e 7
D T U T | O OO O T PP PP PP PUPRPOPPRN 7
2.2, LAGDWINAOWS/CVI ...ttt ettt s bt e st ettt e s e e e e e e bt e e e e ees 7
2.3, LBDVIEW ettt e h ettt e e e 8
2.3.1. LabView 7.x/8 with old LabVieW Programs..............ceee.eeeeeeeemmeermmmemmeeeeeeeeeeeeereeereeeaeeeeeaaaaaaeens 10
AR TZ 2 Ao | B) €= 1] o T ¢= 15 (=T N P 10
2.3.3. AQDX EXGMPIE SCOPE Vl...coiiiiiiiiiii ittt e et aee e e e e st e e e e e s anne 10
2.3.4. AgDx Accumulated Waveform EXampPle VI oo eeeeeees 11
PG T T o G -7 I PRI 12
PG TG T o I O -7 2 PSP 13
P28 T R o I 02 =1 T I PRI 14
2.4, ViISUAI BASICeiiiiiiii ittt met ettt e nnees 15
b8 T 1 I L = PP 15
2.6, WING RIVET VXWOTKSeviiiiiiiiiiiie etttk ettt e st e e s me e e et e e bt e s s n e e e e s e e e nabne e e s e 15
2.6.1. LIBAIES ..ottt e e e e e e e e 15
2.6.2. INCluSioN Of the driVer lIDFArY ceeee e e e e e e e e e e e e e e e e e e aaeaaeaaeaeaaeeas 15
P22 TS T [Tod [N 5] To] g 1o = T = o]) {o7= L1 T} o IR 16
2.6.4. Standard library.......cccccccvviiiiiiiiiinn e
2.6.5. Example program
2.7 LINMUX ettt ettt e h b ea e R et e e R et e e n et e e n e e e e aarr e e e e e e eean

3. PROGRAMMING AN ACQIRIS INSTRUMENTotttiiiiiis ottt 17
3.1, Programming HINESceeiiiiiiiieie oo eeeem ettt e e e e st ee e s sb bt e e e e e e bbb bbe e e e e e s aanbbbeeeeeeesnnennees 17
3.2, DeViCe INITAZALIONceiiiiiiiiieiiie ettt e e et e e e e s s bbbt e e e e s e bt r e e e e e e s s aannnrneeeas 7.1

3.2.1. PCI & VXI Identification by Order FOUN.............ocoomi e e e e e e e 18
3.2.2. PCI Identification by Serial NUMDET ... et e e e e e e e e e e e aeaaaaeaaens 18
3.2.3. PCI Identification by BUS/SIOt NUMDETcooiiiiiiiiiiee e 18
0 Y I (o [=1 o1 111 o%= 4[] [P P PP P TP PPPPPPPPO 19
3.2.5. PXIVISA & LabVieWRT 1dentifiCation............ccoieaeiiiiiiiiiiiiiiiiee e 19
3.2.6. Firmware initialization (AP-FAMILY/12-bit-FAMILY/AC/SC/TC) ccoeieeeiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 19
3.2.7. Automatic Definition of MUIIINSTIUMENTS............timmeeieiieee e 19
3.2.8. Manual Definition of MUILINSTIUMENTSco i ettt 20
3.2.9. AgGeo.map file positioning

3.2.10. SIMUIALE DEVICES ... eeeiieiiiiiiiiii e eietee e ettt e e e e ettt e e e e s et bbbt e e e e aab e e e e e e e e ssn e e reeeeeaanrbneeeaeenas
3.2.11. Terminating an Application

3.2.12. Reinitializationcccvveeereennns

3.3. Device Configuration................c..coe...

I N ©e a1 i To 0T o [ANV =T = Vo (=T £ PP RTUPPPPRTRN
o I 2 7= U ol oo Vi [0 [V = 1[0) o [P O TP PPRT PR
N B 111 0 1= T4 o T PP RSP
3.4.3. 'Fixed Pattern’ Background Subtraction
3.4.4. Configuring Noise Suppressed AcCUMUIAtIoN (NSA).....cuummeeesirrrieeeeeeanniiiieeeeessaiiieeeasennes 27

3.5, Configuring SSR ANAIYZETScoiiiiieeeiee et nanees 27
3.5.1. ACQUISILION PAIAIMELETSciiiiiiiiiiiiieee e o s sttt et e e e e st bttt e e e e e sab et e tesssaatbbeeeaeesannbbbeeeaeeesannnnees 27
3.5.2. Readout CONfIGUIALIONuuiiiiiii it ceme st e s s st e e e e s s e anb b e e e e e e s nnnnaees 28
3.5.3. SSR TIME SLAIMPS ..eeiiiiiiiiiiiitiie et imee et e e e e sttt e e e s s et e e e e s s e baeataees s bbb e eeeeeeasbbeeeeaaeenannnes 29

3.6. Configuring AP family PeaRC ANAIYZEIS..........c.ooeieeeeeeeeeeeeeeees oo sen e enen e 29

3.7. Configuring UL084A PeaRC ANAIYZEIS........c.cooeoeeeeeeeeeeeeeeee e 30

Programmer’s Guide Page 3 of 66

3.8. Configuring APLO1/AP201 ANGIYZEIS.....ceeiiieiiiiiieeeeeeeee ettt ettt e et e e et e e e e e e e e e aeaeaeeeaaa e e e s e e aaaaeaaeaannanan 30

3.9. Configuring TC8xx Time-t0-Digital CONVEIMEIS........ccceeeiiiiieeeiiiiiiiie ettt e e 31
3.10. [z Le= Yoo U171 (o) o U 31
B0 0 5 IS = T o = T Yoo [U171) 32
3.10.2. Checking if Ready fOr TrigOer . oooi ittt e et et e e e e e eeeeeeaeaeaaaaaaaaens 32
3.10.3. Waiting for ENd Of ACQUISIEIONuuuueiiiiiiiitceeeeeeeeeeieeeee e et e e ee e et ee e e eeeeaeaeaaeaaaaaeaaaeaaaaaeaaeaaaaaaaaaannn 32
3.10.4. Stopping/Forcing a D1-style ACQUISItIONuuimiieeeiiiiiiiiiiiiec e e e 33
3.10.5. Simultaneous multibuffer Acquisition and Readout (SAR) .ceeeeevvieieiiiiiiiiinieen e 34
3.10.6. Analyzer and PedR® AULOSWItC MOTEccooveviveeeeieeee e eeeeee e 34
3.11. D1-Style Dat@ REAUOULuuuuuieeeeieeet i s e e s e e e e eseee st esse e e eeeeeeeeeeeaeeeaeeenaaaaaeaaeeeeens 36
3.11.1. Reading Digitizer Waveforms with the Universal Readdfioncccvvieeeiiiiiiiienniensiceeennnn 37
3.11.2. Reading Sequences Of WaVETOIMSoiiiiicemeene oottt ree e e e e e s e
3.11.3. Reading Raw Sequences of Waveforms
3.11.4. Averaging Waveforms iN @ DIgItIZEouiiummmm s ieiriiiie et ee e ssare e e e e s s sanreeeee s
3.11.5. Reading an Averaged Waveform from an AVEIAgETcuueiooiiiiiiieeeiiiiiiiie e siviiee e e 40
3.11.6. Reading a RT Add/Subtract Averaged Waveform from an AEra........cccccceevvviiiiieeeeeniiinnnn 42
3.11.7. Reading SSR Analyzer WavefOrmMScooi oo 42
3.11.8. Reading AP family PedR® Analyzer Data and HiStOGramsc.cocoeeeeeeveeeeeeeeeeeereeeeeenns 43
3.11.9. Reading U1084A PedR® Waveforms and HiStOGIramscccoceeeveeeueuesereneeeseeseseneesesenenees 45
3.11.10. Reading AP101/AP201 Analyzer WaVefOrMScwmmmeessistrieeeeessnniiiieeeesssaniieessssnnes 45
3.12. LIRSS 4T (3 B = = W == Uo (o 11 | 50
3.13. Trigger Delay and Horizontal Waveform POSItiON....ccuce.viiiii i 50
3.14. Horizontal Parameters in Acquired Waveforms. ... 51
3.15. SEQUENCE ACUISITIONSvvviiiieiiiieiiieeet e sttt ee e s e st eee e e e et et ee e e e s sbaaaae e e e ss s bbbeeeaeesaansbbeeeeeeennn
3.16. LI =01 €= L0] PR
3.17. External Clock and Reference
3.17.1. External Reference..........cccoocvevinnecinm

3.17.2. External Clock (Continuous)
3.17.3. External Clock (Start/Stop)

3.18. F NS R o JE LT @] o<1 = 1o o [PPSR PR
3.18.1. Channel Numbering With AS DUS...........uiiiiiii e 57
3.18.2. Trigger Source NUmMbEring With AS DUSuuiiiiiiiiiiiiecee e 58

3.19. Special Operating MOAESoooiiii i ettt e e et eeeeeeaeeeeeaaaaaaaaaaaaaaaens 59
3.19.1. FrEQUENCY COUNLET .. .uuuuiiiiiiiiiiiiiieieieeesaaeaaaneeeeeeeeesaaaasaaaaaasaaasaaasaaassaaaaanansesnnesssssesnnssbssssnnsnennnnees 59
I R T -V Ao o T I T o = PP OPOUPPPR 60
3.19.3. CSEOUENCE WA ..o iiiiiiiiiiiie ettt ettt ettt e e et e e e e aaaaaaaaaaeas 60

3.20. Readout of Battery Backed-Up MEMOFIESu ettt 61
3.20.1. Preparations before POWEr-Off..........coo i oot e e e e eeeeee s 61
3.20.2. Recovery after POWEr-Off ...t e aeaaaaaaaeaaeaaas 61

3.21. Reading the INStrument TEMPEIALUIEiiiuiiieee ettt e e st ee e e e e s nbreeeeae e s 62

3.22. Building applications that can HIDErMALeooveeeiiiiiiiii e 62

4. APPENDIX A: ESTIMATING DATA TRANSFER TIMESccc. ittt 63

4.1, PriNCIPIES & FOMMUIAS.ccii it oo e e e e et e e e e e e e e e e e e s e e e e e e sme et ete e e s eeeeeeeeeeeeeeeeeeeeeeeneeees 63

N - 1011 o] (1 TR PPTRTTPPPRIY 64

4.3. Comparison Chart for TypiCal TranSTEIS.........cuueeeeieeiiiiiiiiieiii ettt e e e e ae e e e e e e e e e e e e e e e e eaaaeeaaaanas 65

Programmer’s Guide Page 4 of 66

1. Introduction

1.1. Message to the User

Congratulations on having purchased an Agilent Technologiesigcigita conversion product. Acqiris Instruments
are high-speed data acquisition modules designed for aaghigh frequency electronic signals. To get the most out
of the products we recommend that you read the acaoyimgaproduct User Manual, this Programmer's Guide and
the Programmer’s Reference manual carefully. We trugt the product you have purchased as well as the
accompanying software will meet with your expectationd provide you with a high quality solution to your data
conversion applications.

1.2. Using this Manual

This guide assumes you are familiar with the operatiapersonal computer (PC) running a Windows 2000/XP or
other supported operating system. In addition you ought to béigiamith the fundamentals of the programming
environment that you will be using to control your Acgpi®duct. It also assumes you have a basic understanding
of the principles of data acquisition using either, a eflanm digitizer, a digital oscilloscope, or other similar
instrument.

The User Manual that you also have received (or have access to) hastanpand detailed instructions concerning
your Acqiris product. You should consult it first. You wilid the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you first receive your new Ascgroduct.
Special attention should be paid to sections on safety, pagkagd product handling. Before
installing your product please ensure that your system coafigar matches or exceeds the
requirements specified.

Chapter 2 INSTALLATION, covers all elements of installation and performamegification. Before
attempting to use your Acqiris product for actual measargsnwe strongly recommend that you
read all sections of this chapter.

Chapter 3 PRODUCT DESCRIPTION, provides a full description of all the functional elementsyaur
product.

Chapter 4 RUNNING THE ACQIRIS DEMONSTRATION APPLICATION, describes either

the operation of AcgirisLive, an application that enablescbaperation of Acqiris
digitizers or averagers in a Windows 2000/XP envirentn

the operation of AP_SSRDemo and in the following chaptex0OAPemo, applications
that enable basic operation of Acqiris analyzers in a Wind®96/XP environment;

the operation of TC Demo, the demonstration program thdilesdasic operation of
Acqiris Time-to-Digital Converters in a Windows 2000/¥Rvironment;

the operation of AcqgirisAnalyzers, the demonstration prografor the
SC240/AC240/SC210/AC210 from a PC running a Windows 2000pérating system.

Chapter 5 ERROR! REFERENCE SOURCE NOT FOUNmhen present, describes the purpose and
operation of the Geographic Mapper application which is neddedsome AS bus Multi-
instrument systems.

This Programmer’s Guide is divided into 3 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentationaantb use it.

Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING STARTED, provides a description for
programming applications using a variety of software pet&land development environments.

Chapter 3 PROGRAMMING AN ACQIRISINSTRUMENT, provides information on using the device driver

functions to operate an Acqiris instrument.
The accompanying§rogrammer’s Reference manuals divided into 2 sections.
Chapter 1 INTRODUCTION , describes what can be found where in the documentation andhme fit.

Chapter 2 DEVICE DRIVER FUNCTION REFERENCE , contains a full device driver function reference.
This documents the traditional Application Program Int=fdAPl) as it can be used in the
following environments:

LabWindowsCVI, Visual C++, LabVIEW, MATLAB, Visual Basi®isual Basic .NET.

Programmer’s Guide Page 5 of 66

1.3. Conventions Used in This Manual

The following conventions are used in this manual:

This icon to the left of text warns that an important painst be observed.

WARNING Denotes a warning, which advises you of precautions tadedeoid being electrically shocked.

CAUTION Denotes a caution, which advises you of precautions tottakeoid electrical, mechanical, or
operational damages.

NOTE Denotes a note, which alerts you to important information.

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in theoteatnote

mono text is used for sections of code, programming examplé®perating system commands.

Certain features are common to several different modBl@sincreased readability we have defined the following
families:

DC271-FAMILY U1061A/U1064A/UL1069A DC135/DC135HZ/DC140/DC140HZ/EX/
DC211A/DC241/DC241A/DC271/DC271A/
DC271AR/DP214/DP235/DP240

AP-FAMILY U1081A/U1082A AP240/AP235/AP100/AP101/AP200/AP201
12-bit-FAMILY U1066A/U1070A DC440/DC438/DC436/DP310/DP308/DP306
10-bit-FAMILY U1062A/U1065A DC122/DC152/DC222/DC252/DC282
U1071A-FAMILY all U1071A variants, DP1400, U1091AD28

1.4.Warning Regarding Medical Use

The Agilent Technologies Acqiris cards are not designeld @mponents and testing procedures that would ensure
a level of reliability suitable for use in treatmertd diagnosis of humans. Applications of these cards involving
medical or clinical treatment can create a potenbiabtcidental injury caused by product failure, or byrsrom the

part of the user. These cards aceintended to be a substitute for any form of esthblisprocess or equipment used
to monitor or safeguard human health and safety in melétiment.

WARNING: The modules discussed in this manual have not been designed for making direct measurements
on the human body. Users who connect an Acqiris module to a human body do so at their own
risk.

1.5. Warranty

Please refer to the appropriate User Manual.

1.6. Warranty and Repair Return Procedure, Assistance ad Support

Please refer to the appropriate User Manual.

1.7. System Requirements

Please refer to the appropriate User Manual.

Programmer’s Guide Page 6 of 66

2. Programming Environments & Getting Started

Agilent Technologies supplies sample programs as éngtguoint for the development of user-specific Acqiris
applications. For Windows systems there are samples foWiteal C/C++, Visual Basic, LabWindows/CVI,
LabVIEW, and MATLAB. For VxWorks real-time systems theare sample programs for Tornado. An Application
Program Interface (API) hip file, with a shortcut namedjifis Instrument Driver Help, is available and contains
condensed descriptions of all of the interface functions.

The API has been split into three families:
= Acqrs Generic functions - AgBx - these can be used forairds Instruments
= AcqrsD1 Digitizer functions - AgDx - to be used for Digétis and Analyzers

= AcqrsT3 Time-to-Digital Converter functions - AqTx - to be dider the family of Time-to-Digital
Converters

All of these functions are still contained in one dityr calledAqDrv4. The LabView interface is split into the three
corresponding AgXX parts. The AcqgrsD1 section includes redundgies®f the generic functions so that
backward calling compatibility can be maintained fxistng code.

Preliminary remark: it is assumed in the following that the hardware and Asdgoftware installations (see User
Manual chapter 2) have already been completed.

NOTE: Visual C/C++, VxWorks, and LabWindows/CVI all rely on the stadd®ISA types defined by
VXIplug&play Systems Alliance (VISA). Thisatype.h include file can be found in the include directory created at
installation.

2.1.Visual C++
For digitizer users:
* Examine the code of the examples, *.cpp, to identify onelisi most relevant

* Open the project file,vcproj for Visual Studio .NET or Visual Studio 2008, atsp for VisualC++, of the
example and build the project.

» Note that when writing your own application you should indeztiines
#include "Acqirisimport.h"
#include "AcqirisD1Import.h"
at the beginning of every file that will access AcgDis Driver functions.
* The project should link to th&qDrv4.lib file.
For Time-to-Digital Converter users:

* Open either the appropriate project filecproj for Visual Studio .NET ordsp for VisualC++, for either
GetStartedTC84xor GetStartedTC890and build the project.

» Note that when writing your own application you should indeztlines

#include "Acqirisimport.h”

#include "AcqirisT3Import.h"

at the beginning of every file that will access Acgirime-to-Digital Converter Driver functions.
* The project should link to th&qDrv4.lib file.

2.2.LabWindows/CVI
* Open the project fil&etStarted.prj in LabWindows/CVI and build the project.
* Note that you should insert the lines
#include "Acqirisimport.h”
and either

#include "AcqirisD1Ilmport.h"

Programmer’s Guide Page 7 of 66

or

#include "AcqirisT3Import.h"

at the beginning of every file that will access AwDevice Driver functions.
¢ The project should include tggDrv4.lib file.

2.3.LabVIEW

The AgXX (Acqiris Digitizer) driver for LabVIEW conform® National Instruments' Instrument Driver Standard. If
LabVIEW is installed on the target machine when the Acgoif$ware is installed, the AgXX driver interfaces will
be copied to the LabVIEW n\Instr.lib directory. The drivendtion VI's can then be found on the Functions palette
(block diagram), Instrument Drivers subpalette. Theralds a Getting Started VI, as well as some example. VI
The standard API help file is available from within LaBW. The Revision Query VI gives information on the
current version. There are actually many llIb files, &diB, AqTx.llb, and AgDx.lIb containing the routines shown
below. The AgDx_obs.lIb has deprecated but still usable routines

Under LabView8 the three families discussed above haea Ipbaced into 3 projects. Each project contains
Examples, Private, and Public Folders. The project fadiey contains an Acqiris Xx Readme.html giving version
information. As an example, the Tx project looks as shown below

®. Project Explorer - Acqiris Tx.Ivproj |EE]E|

File. Edit Wiew Project Operate Tools ‘Window Help

TR Il |]

Ttems | Files |

-
I
=1 il:i_ Project: Acgiris T vproj g
= B My Computer
= [J Examples
Lol Acgitis Tx TCE40.vi
. |mi, Acairis Tx TCA90,vi
L.l Acitis T TCB420v
= [Acgiris T viib
= [J Public
.-t_l [Action-Status
= Configure
Data
Likility
dit,mng

= VT Tree.vi

- [P Private

!;.ij Acqiris Tx Readme, html
& ' Dependencies

'% Build Specifications

The Example folder contains ready to use potentiatistpipoints for your own programs. Individual library

functions can be found at the Public level or in one of thetdgoaes shown. Query functions are in the Utility
folder. The block diagram of the VI Tree.vi can be useddeess individual functions. It allows quick and easy
access to all needed vi's.

The AgBx Generic functions family contains the following vi's.

Programmer’s Guide Page 8 of 66

Examples

- - ﬁ‘tﬁ o
Initialize o thetr| o

it 01 Configuration Utility
. BB Eal: | [ALEe| [Rel= FiqBz- Rl ! oy
Pl Ceuia R | | i
Initizl. Lzgis Fievirion]| |Basct | |Eet LED| |Error? ar [el
ﬂ-qist e -FLE AiqH Biql= Hgll
Errnr® 'R:;E}- 1 ey Ehper Clier
Close Sheick I'E?f.':m il 3t Indeel| | Chane
8 T .ai'ﬁa éﬁﬂ.s Qﬁu‘ EaEe | [Aa0= Bl
{51 {14 UK B
1P lst Goiee | Dz | |CH Db Calik, | [Calib.
Elosofil Tye | [Tupeldq |Tvpe | foliTon i
AqH: ﬁq!_:'r [PiqBe | [Aqlx FiqBa- EYCER Pl
"wlny Calib. E;',?,',‘-,'_ Calib, | [Calib, | [Fuspe [[Resume
Class Cantel | Baquire] [Saue Laad Cikrl, Citrl,
ﬂ-qi*
Sk ALEE

The AgBx Examples section contains three very simple casg®w some basic functionality.

The AqDx Digitizer functions family contains the follavg vi's. The diagram also shows the AgBx tree. These
AgBx functions are to be preferred over their AgDx equivalents

Getting Started Application Example Acqgiris Bx Generic ¥Is
Rl Al Al X
Ge:itlng Exampl ATCUm; ﬁ
Starked Seope| |[Exampld
Configuration Status Action Data Utility
Bqh gl Pl AqDix #aqlin ﬁ"qﬁ ETIR Aghe “AqDx gDz ‘B0 ME
_ A L"_ v o L i O o o iy (i A "o
Eonilg. CEnfig | [CEnfig. Gy | [E0ery | [Eaery Fid fulY F!i AVE A Bz ;
wores | | Honid | [Bdom art Horizl | Tem Etark Heg DATH) lfupn. | [FBeHag
[EqDie E..,Dx. gl | (EqDi | [AaDe 7| [AqDe TP }@T Bgbas FF b e
- e ey FE) i [l = e = =
Conf Ex| [Canfia. | [Canfia. & Fd 29l | |FE
s e T R0 (B B @R) Peh (B | [,
AaDe | [#a0a Falz Fabz_ | [#abx FaDE Babn] [Eab= Aaln Aabn B0
S| (R o ll oot ol o e e e Fe
= hfig, anfig. | [Cenfig. ueriy Clger K 5 n Tee
Rlui | [ESe oL [ZReR R | (Bt [ST [hecum | Avermge Bank
4D Al Ba0n =TT BAqls: Aglhe Babn Bqbn BqDx Fqlx
o Z L ks Cet= e = SR
Ew | [Config. | [Cenfig %"“&'Ex EHcry Euery E
4 Ctrl 2o FC Ctrizo FC GATED Z5R-
Fqhe | [Aabx Hqlx BigDe gD Aalk AqDx Hal
e— == |e= - = .‘-I—?d'-“». — mar| =
Canfig, :Iél Conf Ex| hr :I%I ClueritE iz
Fads Iem Plade M PEAKE| [HIETDS
Al Piqli FqD AqDa “FqDi
e Wl e)
Config, | |Sonfig. uery ey FdFLC
IBdanual] Llndef Eybis B Eeg

The AgTx Time-to-Digital Converter functions family cairts the following vi's. The diagram also shows the AgBx
tree.

Examples Acqgiris B Generic YIs
i) [Eama| [AeTes Aalli
TCad0 | (Tos42 | [Tosa0
Configuration Status Action Data
[Da -if_l e gﬂ;{m [T am'm @ui’?ﬁ‘ mﬂy = [ETT?’E
Canfig. ahfig. anfig. onfig. Bijer uery = e
Aca. B, (Charnel| B
Crrlaa| |21, | |Shonnel] AT Ctrite | |B5y S rinch Start H
T Tt iy [Bate CFET BTy
b eate ucy | e o [
Pelods Mods Ekakuz Etop BaNy
FaTe]
EI";;::
Farce
Trigger

Programmer’s Guide Page 9 of 66

2.3.1. LabView 7.x/8 with old LabView programs

If you have an existing LabView program you can still user illevelop futher under LabView 8. You can continue
to use the VI's and libraries of the LabView 7.1 environment

If you are still using the AgDx versions under LabView 7.x thdlnot immediately be found when you load your
vi. LabView will ask you which library should be used; you shoeider the name of the library of obsolete
functions, AgDx_obs.lIb.

2.3.2. AgDx Getting Started VI

b Acqiris Dx Getting Started.vi Front Panel on Acqiris Dx.lvproj/My Computer

File Edit Wiew Project Operate Tools Window Help
BEI |EH 13pt appication Font |+ | [3= |[a][+] 3
~
Resouce Name Channe| Harizontal Settings Yertical Settings arror out databes seqDescArray out
|t
FCLUINSTRO =1 Mumbir of Segments Full Seale lstatus code raturne_dsamnlesPerSeg P
Trigger Settings = Aiooo] 1000 e
Number of Samples « g
Trigger Source Trigger.Coupling M —p Offsat SOUrEe M ‘,'Mpmnt timestampLo
f e — 11 o
Sicterral | Hpc] == =0.000 | X
o - Sampling Intarval Couplin sampTime 665112267
TrigLevel 1 Triglevel 2 Trigger Slope Fing
: g AL00E-a 45c, 1 Mohm | IES tmestamp Al
gooo0 | Hoooo | SRositive El DG, LMGhm | :
& 8 b Delay Time 3 uaain ‘—JD
e e (AT
Hoocero | Riead Mode [I vl o oosa0ezs
, = 4anc I vy [[vorFeet
Acquired Waveform {imited ko 10 segrents) Ei - e—
e 0
returnedSegments
a0 B [t
Seqg 1
9. - nbravgiforms
T
Seg3 - actualTriggersInfcglo
CET | a—
Seqs - actualTriggersInAcqHi
Lz (1]
Seq 6 “
reserveds
oo | |
seq s A actualbatasize
seqc BN |
missingyalue
.
v
Acairis D lwvpraj/My Computer | € >

This VI demonstrates how to use some of the basic compooktite AgqDx Acqiris Digitizer Driver. It finds and
initializes a digitizer, sets the basic parameters aaogrto the controls on the front panel, and then acquires one

waveform. Note that the front panel controls should béoséteir desired values before the VI is run.

2.3.3. AgDx Example Scope VI

| AqDx Example Scope.vi o |m] 5]
File Edit Cperate Tools EBrowse MWindow Help Pl
B[] @[n] !
Digitizers - : _‘J
Harizantal Settings Wertical Settings error ouk
Channel
PCLGINSTRL = f'ﬁ_ Humber of Segment :ull Scale status code
; | - 5.000 o
Trigger Settings il L -
source
Trig Source Trig Channel Trig Slope Bumhekof S EFFSEt r T
i AT el i
f};{nterna\ | ?1!1 ‘ ﬂﬁositive | ¥200 | 12000 | | ‘
: : |
TrigLevel L Triglevel 2 Trig Caupling :amphng il jouphng Error Message:
oo | Joow | Hpc JesED | b, 1mohm | Y
Delay Time Bandwidth
Auto INorma\ I Singlel Stap I 2 af e
0.00E+0 | o bandwidth limit |
s u g
T =
Acquired Waveform (limited ta 10 segments) fll'ﬁ’ﬂ
Seg0
Segl
Seqg 2
Seq 3
Seg4
Seq5 &
Seg 6 |
Seq 7
Seg 8
0.4 | 1 | I I I I [gega
O.0E+D 2.0E-7 8.0E7 L.OE6 12E6 1,666 18E6 2.0E-6[7%9
&
Ly | v

Programmer’s Guide

Page 10 of 66

This VI presents a basic, interactive virtual oscilloscogiag the AgDx Digitizer Driver. Not all the functiality of
the Acqiris digitizers is supported in this program, bustrad the most-commonly-used functions are demonstrated
in it.

2.3.4. AgDx Accumulated Waveform Example VI

i AqDx Accumulated Waveform Example.vi

File Edit Operate Tools Browse Window Help bz

o
[[@[n i)
Resouce Mame hannel Horizontal Settings Vertical Settings d
'F_‘C_I-_EN?I"EE—| 5 | error out
i At Mumber of Samples Full Scale z
AR S e o status code
Triger Setti i 45,000 -
tigger Settings F.1000 |] a
Trigger Source Trigger Coupling Sampling Inkerval Offzet e
Hreernal | 4pc | Si.o0e-s | fpoo0 | A —
Trig Level 1 TrigLewel 2 Trigger Slope Delay Time Coupling =
oo | E',EZo_qun_|?1Positive | e | 3DC, 1 Mohm |
— [0 | S+
B R e v | Press ko Accuﬂulate another waveform, l!l |Number of Accumulations “ijﬂl M

1.5~

! ! ! | ! I
100 200 300 i 600 F00 00

El | jj

This VI demonstrates how to use the Accumulate Wavefomation of the Acqiris Digitizer Driver. It finds and
initializes a digitizer, sets the basic parameters aaegrto the controls on the front panel, and then acquires and
accumulates waveforms as the user requests. Note thabiteénel controls should be set to their desired values
before the VI is run.

Programmer’s Guide Page 11 of 66

2.3.5. AqTx TC840 VI

Eile Edit Yiew Project Operate Tools ‘Window Help
o[@] 8 @ [130t Application Font |~ | [8~|[Tia~ [~ [£5~]
Resource Name (PCLINSTROY
PCLINSTRO I Bdit the resource name of the time dounter moduls, L
Select an INPUT channel and set his level,
Hame: Set the level for COMIN,
‘fau can also set the number of samples and the interials used [}
Setial Number | to compute the histogram.
| |
Mumber of Channels ﬁ Use the wertical scrollbar ko show how data arrays and data descriptors
are filled.
TDC Resalution j.00 ‘e added the read data in 132 (Read Data Ink32,wi) to show you how to
= - | implement it. Click the Read Int32 switch to activate the read process.
NPT wil) (] =
— B
INPUIT level [4] 310 |
COM It vl [V] HI0 | commsiope Pastive |
Histogram
=g—
40+
Mure samples
A
ane 100
intervals
20— 10
10
mean value error out
= o
40014 40024
Time: STCR I
Raaled [s] Databesc Real6d
-e!ru'_ = Read Ink32
dataPtr - >
nbrsamples Ints2 Ink32 5] Databesc INk32
0 I'T poy I
i‘ 0 ’-}-D il dataPtr
sampleSize n 537
R
a - nbrsamples
F samplaType It} T—
samplesize
: e | —
; ' = - sampleTvoe e
I!Acqiris T Iwprojiy Computer| ¢ >

This VI demonstrates how to use a TC840 Time-to-Digitalv@der. It finds and initializes an instrument, séis t
basic parameters according to the controls on the franel, and then acquires and accumulates data as the user
requests. Note that the front panel controls should be Hstitadesired values before the VI is run.

Programmer’s Guide Page 12 of 66

2.3.6. AqTx TC842 VI

P Acqiris Tx TCB42.vi Front Panel on Acgiris Tx.lvprojiMy Computer @@
File Edit Miew Projeck Operate Tools Window Help BT
Eblﬁ%i 8 IE| 13pt Application Font |« ”:D'\' l Tu:-”ﬁ' ||!""i-r| s
F.s
Resource Mame (PCIINSTRO)
FIEl NS IR0 ‘ Edit the resource name of the time counter module,
Select an INPUT channel and sek his level,
Name | | Set the level For COM TN,
You can also set the number of samples and the intervals used
Setial Mumber] | ko compute the histograrm,
Murnber of Channiels 0 | IJse the wettical scrollbar to-show how data arrays and data descripkors
are fill=d,
TDE Resolution EﬂEI
meuT 1 ,
o = INPUT Slspe Positive |
INPUIT level [V] @0
COMMNIsvel[V] m0 | cOMINSlops Postive < |
Histogram
S0
40
Mum samples
’ L
30 -j 100
] inkeryals
20 10
10-
mean yalle
0 [0
61,0010 &l.001u
Reales [5] Databesc Realbd
gn- ——— error out
IdataF‘tr - skakus code
T g
nbraamples P
B | | =
samplesize
i
sampleType
i
1 W
Acgiris Ta. eprojMy Cu:umputer| £ »

This VI demonstrates how to use a TC842 Time-to-Digitalv@der. It finds and initializes an instrument, sets the
basic parameters according to the controls on the franél, and then acquires and accumulates data as the user
requests. Note that the front panel controls should be Hetitalesired values before the VI is run.

Programmer’s Guide Page 13 of 66

2.3.7. AqTx TC890 VI

P Acqgiris Tx TCB90.vi Front Panel on Acgiris Tx.lvproj/My Computer

Eile. Edit Yiew Project Operate Tools Window Help T]
& I@i = @ [13pt Application Fant |+ |[S | [~ |12+][5+ FeAt
F
R'_EfE“":E Name (PCL:IMSTRO) Bdit the resource name of the time Sounter madule, .
PeTINSTRO ‘ Select an INPUT channel and set its level and slope,
- Set the level and slope For COM IN,
Marrie | ‘ Set the numbet CountEvent For the nurmber of starts For each
mcouisition before runningthe ¥1, [|
; You can-also set the number af intervals to be used to compute the
Serial Mumber ﬁ i
WARMNING: The horizontal axis is recomputed For each acquisition!
Murmber of Channels 3
o] & .

[|
TDC Resolution 3,00 Calibrate [0S

INPLIT 311
INPLIT level [¥] 510

INPUT Slops Prsitive o |

COM TN level [¥] 510 COMINSkpe Bostive o |
Histogram
250 CountEvent
o0
200-
imtervals
150~ 30
1o0-=
50~
mean value
0= i | | [[| | T o
18,360 16,400 18,420 13,450 15.47n 18500 18.52n 18.55n 18.59m
Tirme STOR I
error out
stakus code
dn
source

Int32 .
i Aty Databesc

dakaPtr
o
l& %] nbrSamples

2 = | I
samplesize
o v

Acaqiris Tx beprojMy Compuker £ >

This VI demonstrates how to use a TC890 Time-to-Digitalv@der. It finds and initializes an instrument, séis t
basic parameters according to the controls on the front gamkethen acquires and accumulates data on the common
and the chosen channel as the user requests. NotedHabrth panel controls should be set to their desired values
before the VI is run.

Programmer’s Guide Page 14 of 66

2.4.Visual Basic

Visual Basic support is available with example programsN&T in the<AcqirisDxRoot>\VB.NET directory and
for Version 6.0 in thecAcqirisDxRoot>\VB6 directory.

The VB.NET sample program comes in 8-bit single segroentulti-segment versions. Than files give access to
the complete application. TheAcqirisDxRoot>\include directory contains thevb files needed to access the
Acqiris driver. All application need to referenéeqrsinterface.vb and eitherAcqrsD1linterface.vb for digitizer
useor AcgrsT3Interface.vb for time-to-digital converters.

The Visual Basic sample program comes in 8-bit and 12ebgtians. The 12-bit programs can also be used for the
10-bit digitizers. Thevbp files give access to the complete application. ¥AeqirisDxRoot>\include directory
contains thebasfiles needed to access the Acqiris driver. All applicatioesd to referenc&cqrsinterface.basand
AcqgrsD1lInterface.basfor digitizer use. There is no VB support for Time-to-Dagi€onverter modules.

The Visual Basic sample program is capable of managiveyaeAcqiris digitizers attached to the computer and of
displaying one channel of one digitizer at a time. Ifdigitizer exists on the computer, it initializes 3 simetht
digitizers (inSub Form_lInitialize()). While it has enough functionality to permit a fairly cdetp operation of a
digitizer, many possible features were left out in ordéeetep the program simple to understand.

Simulated digitizers have fixed simulated input signals (siages, triangle waves or square waves) that cannot be
modified through the supplied API.

Note: The programming advice in the rest of this manual is giveth&oC language interface. However, it is equally
valid for Visual Basic. Refer to th&cgrs...basor .vb files for the correspondence between the Visual Basic and C-
language names of the Acqiris driver functions.

2.5.MATLAB

MATLAB is a very powerful environment to analyse and digplata. The MEX interface can be used with
MathWorks MATLAB 7.3 or a newer version. The interfaeni it to the Acqiris products offers simple direct
access to the Acqiris driver. An example is in thealoey <AcqirisDxRoot>\MATLAB .

To use it,
either set the MATLAB current directorycfl Command) te<AcqirisDXRoot>\MATLAB

or the file from that directory to the directory of your atei

GetStarted

Filename:Ag_GetStarted.m
Argument: No Argument

This first example shows you how to perform a single adapris The desired configuration is loaded. You
then start the acquisition, and read and plot the acquitad da

2.6. Wind River VxWorks

The Agilent Acqiris driver for VxWorks is now provided as diteary file (.a extension) instead of two
downloadable modules (.out extension) as was the case up &er8léaCurrently supported VxWorks versions are
VxWorks 5.5 and VxWorks 6.4. Currently supported processmats are PowerPC 603, PowerPC 604, PowerPC
440 and Pentium.

2.6.1. Libraries

There is a different driver library for each VxWorkersion, and for each processor model. The
vXWOrksXXX/AgDrvWxW_YYY .a file (where XXX is the VxWorks vesion and YYY the processor model) must
be included into the VxWorks image. For example, on a Vx\W#étk running on a Pentium, you must use the
vxworks5.5/AqDrvWxW_PENTIUM.a file.

2.6.2. Inclusion of the driver library
To include the driver library into a VxWorks image, $& path of the ".a' file as value of the LIBS macrpésated

by a space if there are several libs). If you aregi$iornado, don't forget to click on 'Add/Set' button befidosing
the macro window.

Programmer’s Guide Page 15 of 66

2.6.3. Inclusion of an application

First, compile your application into an object file (xdemsion). Then include your application into the VxWorks
image by setting the path of the object file as the valitlee EXTRA_MODULES macro. You must add the
compilation flag-D_ACQIRIS to compile correctly.

2.6.4. Standard library

You must include the C++ standard library in the VxWorks imadeetable to use the Agilent Acqiris driver for
VxWorks.

2.6.5. Example program

The VxWorks sample program is written for the Tornado emvirent. TheGetStartedVxW.cpp file contains a
simple user program which:

* spawns a process with a large stack as needed btiesAdriver

« finds the Acqiris digitizers on the target machine

« initializes the first (or only) one

« configures some acquisition parameters (and rereadsftihexmecking)

« loops over a cycle that
- starts the acquisition
- waits for it to terminate
- reads the waveform

2.7.Linux
The AcgirisDemo program can simply be run from the Acqirigkidirectory by entering:
Demo/AcqirisDemo

The library /usr/lib/libAgDrv4.so is compiled with bér gcc 3.3, 3.4, or 4.1; you need to have installed ébget!
version.

When starting this program, the system can complain abouissing dependency on libgt-mt.so.3. Indeed,
AcqirisDemo requires the Qt3 gui library to be presenyaur system to be able to run. Install it using theesyst
package manager of your distribution: apt-get, yum, or YaST

The Linux GetStarted sample program is provided ready to run. It can alsoréated without the need of an
additional development application. Enter the following comusa

e c¢d usr/src

* cp -r/usr/src/agilent/acqiris/examples examples - to copy the example directory and
all of its contents.

* cd examples - to change to this new directory containirgggburce files

* make - to compile and link the program

* Note that the include and library paths are defined ilvthkefile.

The GetStarted.cppfile contains a simple user program which:

* has globally allocated buffers to achieve optimal readadibpeance

» finds the Acqiris digitizers on the target machine

» initializes the first (or only) one

» configures some acquisition parameters (and rereads thernefoking)

* loops (100 times) over a cycle that
- starts the acquisition
- waits for it to terminate
- reads the waveform

Programmer’s Guide Page 16 of 66

3. Programming an Acqiris Instrument

3.1.Programming Hints

When programming an Acqiris instrument it is importanteimember that the Acqiris driver must be freshly loaded
(this is usually automatic) by any process that usesnthdules. This means that each process starts oveawith
completely clean view of the system and no knowledge of aeyiqusly determined calibration constants or
settings. Thus a calibration ought to be done, or loatlefhre the modules are used for any acquisitions. Okeour
the system may have to be recalibrated later if thepeemture of the modules is changing. Users cannot expect to
control Acgiris modules with a succession of process invagaiivith each one executing a single command.

The Agilent Acqiris AgDrv device driver ithread-safe i.e. its API can be called simultaneously from multiple
threads. All of the driver functions are reentrant. The thesdelty is guaranteed by using instrument-based mutual
exclusion for functions taking an instrument handle as inprarpeter, and a global lock for the other functions. This
means that access to a given instrument is serialized adock, ensuring that only one thread reads fromriesv

to that instrument (and associated variables) at amgy. tHowever, calls to functions tiiscover initialize or close
instruments, while the instrument(s) are still in use ireothreads, should be avoided to prevent errors due to
concurrent attempts to obtain the global lock. Finalljmember that even though the driver is thread-safe, great ¢

is always required when designing applications usingiptelthreads to avoid problems such as race conditions or
starvation.

Be sure to read the comments on the functions and the@impgers in chapter REVICE DRIVER FUNCTION
REFERENCE of the Programmer's Reference Manual Another valuable source is the header files:
Acqirisinterface.h, AcgirisD1Interface.h, or AcqirisT3Interface.h for C-like environements, or the equivalent
.basor .vbfiles for Visual Basic.

The examples below do not check the return value ofAttggs_... functions. In real applications, you should
always check the return values of functions.

3.2. Device Initialization

Before any (real or simulated) device can be used, @aadlbe must be initialized with a separate call eftinction
Acgrs_InitWithOptions . For real devices, you can also use the slightly simpietifion Acqrs_init. Both functions
return theinstrumentIiD (whose value will be different for each device), which nhestsubsequently used in any
other function call. The argumer3Query andresetDeviceare currently ignored. The use of the string arguments
resourceNameandoptionsString are explained with the initialization scenarios in the foifg sections.

If you use modules that are connected via AS bus, you neeghfigure them adlultiinstruments.This lets you
treat them as normal instruments with an increased numhsraohels. E.g. you can connect 3 DC270’s to form a
single 12-channel, 1 GS/s digitizer.

If needed, and before initializing the devices, a cadlitioer

Acqrs_getNbrinstruments can be used to learn how many instruments have been foundvétpaeside-
effect of this call will be to select the use of $egnstruments. This can be manually circumvented as
discussed below.

or

AcgrsD1_multilnstrumentAutoDefine can be used to automatically combinévagtiinstrumentamodules
that are connected via AS bus and return the total number ofinmesits found, including individual
modules without AS bus connections. It automatically searétreall sets of modules that are connected
with AS bus, and configures each such block as a swiglé nstrument

As an alternative to automatiultiinstrument definition, you can initialize each module individually withet
function Acgrs_InitWithOptions , and then combine some of them with the func#agrsD1_multiinstrDefine.

This method provides better control over which modulesangbined and in what order, at the expense of careful
book keeping of which instrumentID’s are available. Fdaitle please refer to the section 3.2&nual Definition

of Multilnstruments .

Programmer’s Guide Page 17 of 66

3.2.1. PCI & VXI Identification by Order Found

If you don’t know which and/or how many Acqiris instrumers present on the machine, use this code fragment:
ViSession instrumentID[10];
long nbrinstruments;
ViStatus status;
ViString options = ";
status = Acqrs_getNbrinstruments(&nbrinstruments);
/I Initialize the instruments
for (long i = 0; i < nbrinstruments; i++)

{
char resourceName[20];
sprintf(resourceName, "PCI::INSTR%d", i);
status = Acqrs_InitWithOptions(resourceName, VI_FA LSE, VI_FALSE,
options, &(instrumentIDIi]));
}

The resource name must be of the form “PCI::INSTRO”, I“IMISTR1”, etc. This is true in spite of the fact tladit
PCI, cPCl, and VXI instruments will be found. The integert ph the resource name will be referred to as the
devicelndex The API contains a functiodcqrs_getDevTypeBylndex to allow you to determine the family of an
instrument before actually initializing it.

If there are several instruments in the system, ther anderhich they are found is not obvious. It depends on the
Windows 2000/XP Configuration Manager implementation, on thiebR€ topology in your computer, and possibly
on the BIOS.

3.2.2. PCI Identification by Serial Number

All Acqiris instruments are labeled with a unique semiamber. For PCI digitizers you will find it on the front pan
and for CompactPCl instruments it is on the right injéefector handle. This same serial number is coded into an
on-board EEPROM that is read by the Device Driver updializiation. You can therefore ask to initialize aafie
instrument by specifying its serial number:

ViSession instrumentID;
Acqrs_InitWithOptions("PCI::SER10047", VI_FALSE, VI _FALSE, ",
&instrumentID);

Note that the serial number must be contiguous to the kely@8eR; leading zeros are accepted.

3.2.3. PCI Identification by Bus/Slot Number

While initialization by serial number is easy to implemet has the drawback that anytime an instrument isicepl
by another one (e.qg. if a failure occurred), the pnogheas to be modified. The Acqiris API offers the podisybof
specifying the logical position of the device at initiation:
ViSession instrumentID;
Acqrs_InitWithOptions("PCI::BUS02::SLOTO06", VI_FALS E, VI_FALSE, ",
&instrumentID);
Again, the bus and slot numbers must be contiguous to the kisB&S and SLOT; leading zeros are accepted.

Unfortunately, it is not obvious at all by simple inspectiwhjch bus and slot number a given PCI device occupies.
One way to find out is to use AcqgirisLive and to observebtigslot numbers that can be found under the Help menu
selection in Instrument Information. Another way is to thee auto-identification initialization method and then to
interrogate each device with:

ViSession instrumentID;
char name[20];
long serialNbr, busNbr, slotNbr;

Acqrs_getinstrumentData(instrumentID, name, &serial Nbr, &busNobr,
&slotNbr);

Programmer’s Guide Page 18 of 66

3.2.4. VXI Identification

Instruments in 1X20x VXI Carrier modules will also beuhd by the driver. The resource name will be in the form
“VXI[board]::[logical_addr]::INSTR” like “VXI0::1::INSTR".

3.2.5. PXI VISA & LabhViewRT Identification

The driver can also be used in the VISA environment. Is ¢hise the resource name has the following allowed
forms:

"PXlI<bus>::<device>::INSTR"
"PXI10::<bus>-<device>::INSTR"
"PXI0::CHASSIS<chassis>::SLOT<slot>::INSTR"

3.2.6. Firmware initialization (AP-FAMILY/12-bit-FAMILY/AC /SC/TC)

In these modules the on-board FPGA's (field-programmabte garays) contain processor logic needed to
efficiently execute several crucial functions. For Wind@ms Linux users, they will be automatically programmed
at startup before calibration. The standard initializatisimgAcqrs_init can be used.

The name for the FPGA program file is a synthesis of &d-GA destination, and option information. The file
name suffix is always ".bit". The automatic initiakimsm mentioned above will load the FPGA files as follows:

¢ For the first time initialization of a module needing an PHie, the desired file will be searched for in the
working directory.

« If the above doesn’t succeed then the working directorybeibearched for a file "AgDrv4.ini"

« Finally the directory pointed to by the environment vagabAcqirisDxDir" will be searched for a file
"AgDrv4.ini"

e The "AgDrv4.ini" file should contain the name of a diregtathich will also be searched for the appropriate
FPGA files. Here is a typical example of its contents:
[Acqiris]
fpgaPath=C:\Program Files\Acqiris\firmware
GeoMapPath=C:\Program Files\Acqiris\bin

The GeoMapPath entry will be described later in thiptdra

e The final path used will be remembered and used for alkesulest demands for this module. In particular
this applies ifAcqrsD1_configModeis used to change functionality.

Additional VxWorks Instructions

For VxWorks users, the normal mechanism for finding the FPGA .bitdilgill not work; the driver has to be told
explicitly where to find them. This procedure is also shawtine GetStarted.cpp VxWorks sample program. Thus,
Acqrs_InitWithOptions has to be called with

ViString options = "cal=0";
status = Acqrs_InitWithOptions(resourceName, VI_FAL SE, VI_FALSE, options,
&(instrumentID[i]));
Then, before using the desired module in any mode, youdsk&atute code like that shown below:
ViString FPGADirectoryName = "C:\firmware"; /' or"C:\" for ETS
Acqgrs_configLogicDevice(instrumentID, NULL,
FPGADirectoryName, 2);

As a final step you should now calibrate the instrument (wiiticause the FPGA files to be loaded):

Status = Acqrs_calibrate(instrumentID);

3.2.7. Automatic Definition of Multilnstruments

The function AcqrsD1_multilnstrumentAutoDefine automatically searches for all sets of modules that are
connected with AS bus, and configures each such bloclsigleMultiinstrument It then reports the total number
of instruments found, including individual modules without AS busnections. You still need to retrieve the
instrumentID for each instrument by calling the functidnqrs_InitWithOptions afterwards, as shown below:

Programmer’s Guide Page 19 of 66

ViSession instrumentID[10];

long nbrinstruments;

ViStatus status;

ViString options ="";

status = AcqrsD1_multilnstrAutoDefine(options,&nbrl nstruments);

/I Retrieve the instrument identifiers
for (long i = 0; i < nbrinstruments; i++)

{
char resourceName[20];
sprintf(resourceName, "PCI::INSTR%d", i);
status = Acqrs_InitWithOptions(resourceName, VI_FA LSE, VI_FALSE,
options, &(instrumentlD[i]));
}

The calls toAcqrs_InitWithOptions are needed to obtain tivstrumentID’ s. The physical digitizers were already
initialized whenAcqrsD1_multilnstrumentAutoDefine was called.

The digitizers within a singldultiinstrumentare numbered from 0 to (NbrModulesininstrument — 1). In Agqir
CC10x compactPCI crates, the module 0 is always closdgketcontroller slot, i.e. module numbers increase with
increasing front panel slot numbers. This statemenlsis applicable to CC121 crate configurations with both an
Acqiris acquisition module in one of the last 7 slots and #ieéhPC running under Windows 2000 or XP. Users of
other systems or crates may need to provide AqGeo.hesptdi give the driver needed information. The GeoMapper
application described in the User Manuals can create thisHdr details on channel and trigger source numbering,
please refer to section 3.18S BUS OPERATION.

The master module is automatically chosen, accorditigee rules:
AS bus

« If modules of different memory lengths are combined, ombgdules with the shortest memory length can be
master modules

e The master module is chosen as near as possible to the cemele, in order to minimize propagation
delays.

AS bus 2 U1065A 6U digitizers

e The master module is chosen as near as possible to the cemele, in order to minimize propagation
delays. There can be at most 5 modules irMbkilnstrument

AS bus 2 U1062A 3U and U1071A PCI digitizers
e The master module will be the rightmost of up to 3 modules.

The functionAcqrs_getinstrumentData will return the information about the master module. If yountantrol
over which module is the master, and in which order thewlsl appear, use the manual definition, described in the
next section.

3.2.8. Manual Definition of Multilnstruments

The functionAcgrsD1_multilnstrDefine permits a 'manual’ definition of how to combine multiplgitiiers with
the AS bus. It cannot be used for AS bus 2 instruments.
Use a code fragment like the following one for the manomdgnation of digitizers:

ViSession instrumentID[10], idList[6];

long nbrinstruments;

ViStatus status;

ViString options = "cal=0"; /I since calibration will be performed
explicitly later

status = Acqrs_getNbrinstruments(&nbrinstruments);

Programmer’s Guide Page 20 of 66

/I Initialize the digitizers
for (long i = 0; i < nbrinstruments; i++)

{
char resourceName[20];
sprintf(resourceName, "PCI::INSTR%d", i);
status = Acqrs_InitWithOptions(resourceName, VI_FA LSE, VI_FALSE,
options, &(instrumentlDI[i]));
}
/I Now combine the first 3 digitizers (in inverse o rder)

idList[0] = instrumentID[2];

idList[1] = instrumentID[1];

idList[2] = instrumentID[0];

ViSession multilnstriD;

ViSession masterindex = instrumentID[1];
long nbrinList = 3;

status = AcqrsD1_multilnstrDefine(idList, nbrinList , masterindex,
&multilnstriD);

status = Acqrs_calibrate(multilnstrID);

The first part of the code above finds and initializesrallvidual digitizers, as shown in section 3.l & VXI
Identification by Order Found. Of course, you could also use one of tlee @tmethods of identifying individual
digitizers.

After AcqrsD1_multilnstrDefine has executed successfully, thestrumentlD’s in the list idList become
unavailable for further operations. You must use the retumedilnstriID to refer to the newly defined
Multilnstrument

You are responsible for making sure that
« all participating digitizers are physically connectethwAS bus bridges
* the modules are of the same model type
* the master module has no more memory than any other patitgj digitizer
* an AcqGeo.map file is available if needed by the driver

If the master module has more memory than any other digitlze combined instrument will work as long as you
never request more memory than that available in the utittiagt shortest memory.

The digitizers within the 'manually’ definddultiinstrumentare numbered from 0 to (nbrinList — 1), exactly as
presented in the digitizer liglList. For details on channel and trigger source numbering, plefesgo section 3.18,
ASBUS OPERATION.

3.2.9. AgGeo.map file positioning

For AS bus Multilnstruments in some systems the drivimeed additional information about the physical ordering
of the modules. This information is stored in a filsmed AgqGeo.map which the driver will load when an AS bus
instrument is defined. The driver will search for the Aq@ep file as follows:

e First the file will be searched for in the working di@y of the application.
» Then the working directory will be searched for a filggDv4.ini"

* Finally the directory pointed to by the environment vagabAcqirisDxDir" will be searched for a file
"AgDrv4.ini"

e« The "AgDrv4.ini" file should contain the name of a directampich will also be searched for the
AqGeo.map file. Here is a typical example of its corgent
[Acqiris]
GeoMapPath=C:\Program Files\Acqiris\bin

Programmer’s Guide Page 21 of 66

3.2.10.Simulated Devices

If you want to work with simulated devices, none of the methadove are applicable. Many digitizer modules
supported by the driver can be simulated; analyzers an@gerergenerate data in digitizer mode. Any memory
option available for the module can be used for a calAdqrs_setSimulationOptions as shown in this code
fragment:

ViSession instrumentID;

ViStatus status;

status = Acgrs_setSimulationOptions("M2M");

/I Initialize the instrument

status = Acqrs_InitWithOptions("PCI::DC110", VI_FAL SE, VI_FALSE,
"simulate=TRUE", &(instrumentID));

The first function call sets the instrument options thatwant to obtain, e.g. “M2M” for the long memory optioh

a DC110. In the second call, you must specify “simul@RIBE” (without any spaces!). The device driver creates a
simulated device of your choice. The resource name ssimdwiays of the form “PCl::aannn”, where aannn is a
valid instrument module name.

The simulation options will apply to all subsequent callsAtgrs_InitWithOptions , until they are reset with
Acgrs_setSimulationOptions (™).

3.2.11.Terminating an Application

For an orderly shut down of your application, we recommbeaddllowing sequence:
/I Stop the instruments
for (long i = O; i < nbrinstruments; i++)

{

status = AcqrsD1_stopAcquisition(instrumentIDI[i]);
/I or status = AcqrsT3_stopAcquisition(instrumentID [iD;

}
Acqgrs_closeAll();

Stopping the acquisition of all instruments ensures tlexetis no further activity that could, for example, egate
an interrupt. The functioMcqrs_closeAll shuts down the driver components in the correct order tharslhelps
avoid crashes of the application during closing

3.2.12 Reinitialization

If the operating system of the computer goes into hiberoatstand-by then the driver will return an error,
ACQIRIS_ERROR_IO_DEVICE_OFF, when the application stertsse the hardware again. In this case the device
will not be useable until an Acgrs_lInit... routine is called.

3.3.Device Configuration

As a general rule it should be remembered that new valnese used by the modules, as set with the
AcqrsXX_config functions, are remembered by the drivétwsoe but not immediately acted upon. They will only
really be loaded into the instrument’s registers at thenbéwy of an acquisition when AcqrsXX_acquire is called.
At that time all necessary changes will be made and,ndiépg on the type of changes, the driver will force itself t
wait the appropriate settling time before it starts ttiuisition. This is done to ensure that the acquisition witLio

in the desired state. The program does not have to ineldidecwaits to allow the analog hardware to settle. The
settling times vary from none in the case of no chatoge0.5 ms in the case of offset changes and to ~5 meléyr
changes or changes between normal operation and External Rééetence. In the special case of switching from
DC to AC coupling, the settling time is 100 ms. Time lxetéing changes also have associated settling times.

NOTE: The special case afiaking transitions from low to high impedance is treated immediately to avoid the risk
of damaging the front-end circuitry of the digitizévhen making transitions from high to low impedance you must
ensure that large voltages are not applied before the change has really happened. Therefore it is recommended to
wait ~5 ms after having asked for an impedance change and befdyéngpany large voltages. Impedance changes
can also affect other devices in the signal path

Unneeded calls to the AcqrsXX_config functions should be avoideduse they can delay the start of the next
acquisition.

Programmer’s Guide Page 22 of 66

A NOTE: The AcqrsXX_get functions return the configuration values tesbd for the next acquisition.

Use the following short code fragment for a device configomati

/I Configure

double samplnterval = 1.e-9, delayTime = 0.0;
long nbrSamples = 10000, nbrSegments = 1,
long channel = 1, coupling = 1, bandwidth = 0;
double fullScale = 2.0, offset = 0.0;

long trigCoupling = 0, trigSlope = 0;

double trigLevel = 20.0; /I in % of vertical Full Scale !

AcgrsD1_configHorizontal(instrID, samplnterval, del ayTime);

AcqrsD1_configMemory(instrID, nbrSamples, nbrSegmen ts);

AcqrsD1_configVertical(instrlD, channel, fullScale, offset, coupling,
bandwidth);

AcgrsD1_configTrigClass(instrID, 0, 0x00000001, 0, 0, 0.0, 0.0);

AcgrsD1_configTrigSource(instrID, channel, trigCoup ling, trigSlope,

trigLevel, 0.0);

Comments:

Channel numbers run from 1 to nbrChannels, not from 0! Segmemibers, however, run from 0 to
(nbrSegments — 1).

If the desired sampling interval implies that multipleneerters/channel will be needed a call to
AcqrsD1_configChannelCombinationwill be neededefore the call toAcqrsD1_configHorizontal.

Specifying more than 1 segmentAcqrsD1_configMemory implies the use of Sequence mode. The 10-bit-
FAMILY & U1071A-FAMILY instruments offer additional furtonality throughAcqrsD1_configMemoryEx.
This includes the Simultaneous multibuffer Acquisition andd®aa (SAR) mode to allow a higher loss-less
trigger rate. For such units with extended memory therthe possibility of restricting memory use to the
internal memory to reduce the maximum dead time between s¢gofea sequence acquisition.

The 5 main configuration functions are protected agallesfal or incoherent values. Thus, the system might
adapt the values you ask for. There are 5 'query' countetpattese functionsAcqrsD1_getHorizontal,
AcqrsD1_getMemory, AcqrsD1_getVertical, AcgrsD1_getTriglass, and AcqrsD1_getTrigSource which
you can interrogate.

The functionAcqrsD1_configTrigClass configures the trigger class control parameters of theiatigitFor
most Acqiris products, the edge trigger class is the ongsdeailable. For this class, the available source
patterns are Channel 1 through 4 or the external triggersAddmsD1_configTrigSourcefunction configures
the source parameters coupling, slope, and level as showm iexétmple above. Notice that the functions
AcqrsD1_configTrigClassandAcqrsD1_configTrigSourcemust always be used together in order to complete
the setup of the trigger configuration. Refer to chaptédB2YICE DRIVER FUNCTION REFERENCE of

the Programmer's Reference Manualfor a detailed description of these two functions.

The helper function®\cgrsD1_bestSamplintervaland AcqgrsD1_bestNominalSamplesare sometimes useful

for deciding on the nominal number of data points and the lsaripterval to use for a given time window to
cover. If you ask for a nominal number of samples, theesy actually needs some additional samples for
reasons of data alignment, acquisition stop-time overheddother reasons. In some cases, the additional
'invisible' samples can exceed the number of 'visible' onesh&lper functions take such memory overheads
into account when advising you on the recommended sampling iner@alumber of samples. You are free to
ignore the advice, but the system is likely to adapt yetupsvalues if the requested number of samples does not
fit the available memory.

Specifying the value O falelayTime sets the trigger point to the beginning of the waveform. datiee value
corresponds to pre-trigger, a positive one to post-triggererRefthe section3.13RIGGER DELAY AND
HORIZONTAL WAVEFORM POSI TIONfor a detailed explanation of the usedelayTime.

For DC coupling the trigger levels in %FS as neededA\bgrsD1_configTrigSource can be calculated as
follows:
TriggerLevelPercent = 100*(TriggerLevelVolts + vOff set)/Fsrange;

The granularity of a trigger value setting is limitedthg hardware that uses an 8-bit DAC covering somewhat
more than the desired range.

Programmer’s Guide Page 23 of 66

* To set the external trigger range for a DC271-FAMIIaY10-bit-FAMILY, or a U1071A-FAMILY module, or
an AP240/AP235 signal analyzer platform, add a calldqrsD1_configVertical with channel = -1 before the
call toAcqrsD1_configTrigSource

e The 10-bit-FAMILY & U1071A-FAMILY dual source pattern triggecan be activated by calling the function
AcqrsD1_configTrigClass with an appropriate TrigClass and a sourcePattern indicatie two desired
sources.

3.4.Configuring Averagers

3.4.1. Basic configuration

The averagers have 2 operational modagtizer andaverager controlled with the function:
AcqrsD1_configMode(instriD, mode, 0, 0);

The valuemodecan be set to O (digitizer) or 2 (averager).

The averager mode uses a number of additional configuratrampégers, which describe the requested averaging
conditions.

Use the following short code fragment to configure anayesrof 1000 waveforms of 20’000 data points, with a
dithering range of 15 ADC LSB'’s and a start delay of 128 samples for an AP10

/I Configure

long channelNbr = 0, nbrSamples = 20000, nbrWaveFor ms = 1000;

long ditherRange = 15, trigResync = 1;

long startDelay = 128, stopDelay = 0;

AcqgrsD1_configAvgConfig(instriD, channelNbr,

"NbrSamples", &nbrSamples);
AcqrsD1_configAvgConfig(instriD, channelNbr,

"NbrWaveforms", &nbrWaveForms);
AcqrsD1_configAvgConfig(instriD, channelNbr,

"DitherRange", &ditherRange);
AcqgrsD1_configAvgConfig(instriD, channelNbr,

"TrigResync", &trigResync);
AcqrsD1_configAvgConfig(instriD, channelNbr,

"StartDelay", &startDelay);
AcqrsD1_configAvgConfig(instriD, channelNbr,

"StopDelay", &stopDelay);

Comments:

e The valuechannelNbris usually 0. However, for multi-channel Signal Analygktforms (AP240/AP235,
U1084A) it can take on the value of the desired channel foe sbrthe parameters.

¢ When in averager mode, the following digitizer parametexsgmored:
= delayTimeof the functionAcqrsD1_configHorizontal is replaced by “StartDelay” and “StopDelay”

= nbrSamplesandnbrSegmentsf the functionAcgrsD1_configMemory are replaced by “NbrSamples”
and “NbrSegments”

* For the AP family of averagers, the valugsSamplesstartDelayandstopDelaymust be integer multiples
of the ‘averaging block size’, which @ways 16 in the AP100 or AP240/AP235 Dual-channel mode, and
32 in the AP200 or AP240/AP235 Single-channel mode. If the supplied wahgt an integer multiple of
the ‘averaging block size’, it is truncated to the rewter integer multiple. ThusibrSamples 250 will be
truncated to 240 (15 * 16) on an AP100, and to 224 (7 * 82rAP200. You can query the actual value
with the functionAcqrsD1_getAvgConfig

o e For the U1084A Averager, the values startDelay and stegDalst be integer multiples of the
‘averaging block size’, which is 16 in Dual-channel moded 32 in Single-channel mode. The value
nbrSamples must be a multiple of 256 in Dual-channel mode dnHiggle-channel mode. You can query
the actual value with the functidkcqrsD1_getAvgConfig

* The valuestartDelaycontrols the time between the trigger and the first sataple that is to be added to the
averager sum.

Programmer’s Guide Page 24 of 66

» ThestopDelaypermits the addition of an extra delay to the dead timedwmet the averaging of subsequent
waveforms. Its minimum value is zero.

e The ditherRangevalue may be between 0 (no dithering) and 15 (max ditheri*igase refer to the next
section for further explanations.

3.4.2. Dithering

Dithering reduces the effect of non-ideal differential tioparity of the analog-to-digital converter, by adding or
subtracting small offsets to the input signal. The offsebisstant during the acquisition of a single wavefornd a
then modified to another value during the next waveform.
The dithering range, N is programmable between 0 (teditg) and 15, with the function
AcqrsD1_configAvgConfig(instriD, channelNbr,
"DitherRange", N);

Dithering reduces the range of the ADC by N leveldattop and another N levels at the bottom. In order to avoid
any undesirable effects, you should make sure that thalsi@nge of interest is within the reduced ADC range.

To use dithering with the U1084A, it must be explicitlyabled in addition to setting the dither range. Use the
following API call to enable dithering on the U1084A:

AcqgrsD1_configAvgConfigInt32(instrID, channelNbr,
"DitherEnable", 1);

3.4.3. 'Fixed Pattern’ Background Subtraction

If an averaging operation is executed while the input i:m @peno signal is applied, the averaged waveform should
tend to a constant value with a standard deviatigg= o / VN, where N is the number of waveforms in the average,
ando is the standard deviation of a single waveform.

In reality, only random noise sources are averaged oute Wioke that are coherent with the sampling clock are not
reduced. The open-input averaged waveform thus representdixbe pattern’ background of the averager.
Subtracting this waveform from each subsequently acquirehged waveform should result in more precise data.

In order to facilitate the acquisition of the ‘fixed pattebr@ckground, the Averager modules offer the following

possibilities:

» disconnection of the input with the valoeupling= 0 in the functiorAcqrsD1_configVertical

» For the AP family averagers only: acquisition of an ayedawaveformwithout a trigger signal with the value
‘TrigResync’ = 2 (free run) in the functiolcqrsD1_configAvgConfig However, you get a better measurement

of the *fixed pattern’ background if you acquire with the sanggér conditions as the averaged waveforms that
will be corrected. Typically, it is better to continusing an external trigger signal, rather than ‘TrigResyn2!

The ‘fixed pattern’ background should be acquired in the sametmmrsglas the averaged waveforms that will be
corrected. In particular, the dithering range and the nuwieaveforms should be the same.

Use the following code fragment to acquire a ‘fixed pattbackground with a free- running trigger (AP family
averagers only):

const long channelNbr = 0;
double fsr, offset;
long coupl, bwidth, reSync, freeRun = 2;

/I Make an acquisition, at the current conditions, but with

/I'*Grnd” coupling and free running trigger.

AcqrsD1_getVertical(instrID, 1, &fsr, &offset, &cou pl, &bwidth);
AcqrsD1_configVertical(instrID, 1, fsr, offset, 0, bwidth);
AcqrsD1_getAvgConfig(instriD, channelNbr, "TrigResy nc", &reSync);
AcgrsD1_configAvgConfig(instrID, channelNbr, "TrigR esync", &freeRun);

Programmer’s Guide Page 25 of 66

AcgrsD1_acquire(instriD);
long timeOut = 1000; /I depends on conditions!
AcgrsD1_waitForEndOfAcquisition(instrID, timeOut);

long nbrPoints = ??7?; /I Should be the ‘current’ number of points!
long timeStampLo, timeStampHi, nbrReturnedSamples;
double horPos, sampTime;

/I Read the Waveform directly to the Background buf fer

double bckGndWform[nbrPoints];

AcqrsD1_readRealWform(instriD, 1, 0, O, nbrPoints, bckGndWform,
&nbrReturnedSamples, &horPos, &sampTime, &timeStamp Lo, &timeStampHi);

/I Restore the settings of the averager
AcqrsD1_configVertical(instrID, 1, fsr, offset, cou pl, bwidth);
AcgrsD1_configAvgConfig(instrID, channelNbr, "TrigR esync", &reSync);

Use the following code fragment to acquire a ‘fixed patteackiground, assuming that the external trigger can be
used and is already set:

const long channelNbr = 0;
double fsr, offset;
long coupl, bwidth, reSync, freeRun = 2;

AcqrsD1_acquire(instriD);
long timeOut = 1000; /I depends on conditions!
AcgrsD1_waitForEndOfAcquisition(instrID, timeOut);

long nbrPoints = ??7?; /I Should be the ‘current’ number of points!
long timeStampLo, timeStampHi, nbrReturnedSamples;
double horPos, sampTime;

/I Read the Waveform directly to the Background buf fer

double bckGndWform[nbrPoints];

AcqrsD1_readRealWform(instriD, 1, 0, O, nbrPoints, bckGndWform,
&nbrReturnedSamples, &horPos, &sampTime, &timeStamp Lo, &timeStampHi);

The examples above assume that the background and the averagéoims are read in Volts. In this case, the
background data points are simply subtracted from the aveveaesform.

However, if you read the background and the averaged wavefts 32-bit sums, with the function

long bckGndWform[nbrPoints]; /I Background as 32-bit sum
AcgrsD1_readData(instrID, channel, &readParams, wav eformArray, &wfDesc,
&segDesc);

you must correct the average as follows:
corrWform[i] = waveformArray][i] - bckGndWform[i] + 128*nbrAvgWforms;

The last term corrects for the fact that the 32-bitadare unipolar and that for display purposes the corrected
waveform should be in the middle of the vertical range if tlegagged waveform is the same as the background.

Programmer’s Guide Page 26 of 66

3.4.4. Configuring Noise Suppressed Accumulation (NSA)

As discussed in the User Manual Family of Averagersntibelule can be configured to only accept data above a
fixed threshold and, if desired, to shift the data in thaec Since these two values are expressed in Volts athdsise
ADC counts they have to be converted before use. The User Mdes@ibes this transformation that depends on
whether Data Inversion has been enabled. The NSA threshaitidnality must be enabled and a threshold defined.
If this has been done the NSA base subtraction can alemdided and will be activated using the defined base
value. The order of the calls to AcqrsD1_configAvgCoiidigot important since the final decision is taken when the
acquisition is started. However, the correct full scaleutd be selected with AcqrsD1_configVertical before setting
the NSA levels. Here is an example:

const long channelNbr = 0;
double fsr,offset, threshold, base;

threshold = - offset; /Il place the threshold at the middle of the screen
base = threshold - fsr/10.; /I place the base one division below the
threshold
/I set the base and threshold voltage values
AcgrsD1_configAvgConfig(instrID, channelNbr, "Thres hold", &threshold);
AcgrsD1_configAvgConfig(instrID, channelNbr, "Noise Base", &base);

/I enable the NSA functionality
AcgrsD1_configAvgConfig(instrID, channelNbr, "Thres holdEnable",1);
AcgrsD1_configAvgConfig(instrID, channelNbr, "Noise BaseEnable",1);

3.5. Configuring SSR Analyzers

3.5.1. Acquisition Parameters

The AP235/AP240 SSR analyzers have 2 operational modesalandSSR controlled with the function:
AcgrsD1_configMode(instriD, mode, 0, 0);

The valuemodecan be set to 0 (normal) or 3§Rmode).

The SSRmode requires a number of additional configuration paraméiat describe the requested acquisition and
readout conditions.

Use the following short code fragment to configure a bufferedisition sequence of 800 waveforms of 5000 data
points, with a start delay of 128 samples:
/I Common Configure
long nbrSamples = 5000, nbrSegments = 800;
long startDelay = 128, stopDelay = 0;
AcgrsD1_configMode(instriD , 7, 0, 0);
AcqgrsD1_configAvgConfig(instriD ,0, " NbrSamples
AcqgrsD1_configAvgConfig(instriD ,0, " NbrSegments ", &nbrSegments);
AcqgrsD1_configAvgConfig(instrilD ,0, "StartDelay ", &startDelay);
AcqgrsD1_configAvgConfig(instriD 0 " StopDelay ", &stopDelay);

, &nbrSamples);

Comments:
e The value of the third and fourth argument&tqgrsD1_configModemust always be O.
* When inSSRmode, the following digitizer parameters are ignored:
» delayTimeof the functionAcqrsD1_configHorizontal is replaced by “StartDelay” and “StopDelay”

* nbrSampleandnbrSegmentsf the functionAcqrsD1_configMemory are replaced by “NbrSamples”
and “NbrSegments” in the functigkcqrsD1_configAvgConfig

e The valuesnbrSamplesstartDelay and stopDelaymust be integer multiples of the ‘block size’, which is
always 16 in the AP240/AP235 Dual-channel mode, and 32 AP240/AP#8feShannel mode. If the
supplied value is not an integer multiple of the ‘averggblock size’, it is truncated to the next lower

Programmer’s Guide Page 27 of 66

integer multiple. ThuspbrSamples= 250 will be truncated to 240 (15 * 16) for a Dual-charawegjuisition,
and to 224 (7 * 32) for a Single-channel acquisition. You can gtieryactual value with the function
AcgrsD1_getAvgConfig

» The valuestartDelaycontrols the time between the trigger and when thedigitized data sample is stored.
It should also be noted that whetartDelayis 0, the first few data points, 5 in the case of Dhalrnel
mode and 10 in the Single-channel mode, will always be 0.

» ThestopDelaypermits the addition of an extra delay to the dead time bettieeaacquisition of subsequent
waveforms. Its minimum value may be zero.

e Although not shown here, a call &zqrsD1_configControllO can be made in order to set a trigger veto
time to be respected after the receipt dPrapare for Triggersignal on a Control I/O connector. This
feature is for AP101/AP201 analyzers only.

e Also not shown, is a call to the functiohcqrsD1_configAvgConfig to set a timeout value for the
automatic completion of a segment in case the real triggesr arrives. This feature is for AP101/AP201
analyzers only.

3.5.2. Readout configuration

There are two possible ways of reading the data when iB$fRemode: user gates, and threshold gates. In all cases
the entire acquisition must be read; you cannot ask forrfeagments or points. If you want to read all of the data
you should define the appropriate gate. These settinglssecantrolled through thAcqrsD1_configAvgConfig
routine and therefore must be prepared before the acquististarted. They can be set independently for each
channel if desired.

For user gate readout you have to define the grougata samples that you want to read for each segment.dédee
new values for the gates can be defined during the siigniprocess. They will become effective after the makt
to AcgrsD1_processDateaor AcqrsD1_acquire Here is some sample code:

long g_gateLengthSum[3];

long g_lastGate[3];

long channel = 1, gate =1;

AcgrsD1_configAvgConfig(instriD , channel, " GateType ", &gate);

/[you can define up to 4095 gates,

/I GatePos and GatelLength must both be multiples of 4
AgGateParameters configSetupData[100];

long configObj = SSR_Default;

long gateSize = 1000;

/I this will be the size we want to read

g_gateLengthSum([channel] = 0;

g_lastGate[channel] = 1, /I a very simple example
for(int g=0;g<g_lastGate[channel];g++)
{
/I the first gate starts with the first point
configSetupData[g].GatePos =g * gateSize;
configSetupData[g].GateLength = gateSize;
g_gateLengthSum|[channel] += configSetupData[g].Gat elLength + 8;
}
status = AcqrsD1_configSetupArray(instriID , channel, configObj,

g_lastGate[channel], configSetupData);

For threshold gate readout you have to define the threshold walgits. Data values greater than this will be
selected for readout. If desired you can AsgrsD1_configAvgConfigwith the"InvertData" parameter to choose
data values less than the threshold. In addition you can dineumber of data values before and after each
selected value that you always want to see. This numieitlie range 0 to 16. However, the value will always be
rounded up to the next highest multiple of 4. If two conseculected values are 32 or more samples apart a new
gate block will be generated. Otherwise, the currentkolaill be continued. In all cases the data transferréid w
always be a multiple of 4 samples and it will start gample whose time position is a multiple of 4. Alternatively
the number of data values before and the total numbemlaks can be selected. Furthermore, a limit on the
maximum number of gates per segment can be set.

Programmer’s Guide Page 28 of 66

long channel = 1, gate =2;

AcqgrsD1_configAvgConfig(instrID, channel, "GateType " &gate);
long preSamples = 0, postSamples = 0, maxGates = 1;
double threshold = 0.0; /l'in Volts

status = AcqrsD1_configAvgConfig(instrID, channel,
"PreSamples"”, &preSamples);
status = AcqrsD1_configAvgConfig(instriD, channel,
"PostSamples"&postSamples);
status = AcqrsD1_configAvgConfig(instrID, channel,
"Threshold", &threshold);
status = AcqrsD1_configAvgConfig(instriD, channel,
"NbrMaxGates"&maxGates);

3.5.3. SSR Time stamps

The ‘On-board’ 10 MHz reference clock is used to increingecounter. The value of the counter is stored after the
trigger of each new segment. The value of the counter ceeabléby the software as shown here:

double SSRtimeStamp;
Acqgrs_getinstrumentinfo(instrlD , "SSRTimeStamp", &SSRtimeStamp);

Since each channel is controlled by its own FPGA the ttaraps for the same segment are not necessarily thee sam
for the two channels. The command above works with the sta@pamnel 2.

In this release if the function is called before the ficqjuisition has been started the value returned wil be

It is possible to reset the time stamp when starting ansitiqniusing a call like
status = AcqrsD1_acquireEx(instrID,0,4,0,0);

or with a hardware signal on the P1 or P2 connectors. @hibe done with a call like:
Long TSReset = 1,
status = AcqrsD1_configAvgConfig(instriD, channel, "P1Control",&TSReset);

3.6. Configuring AP family Peak'¢ Analyzers

Since Peal® processing can be viewed as an additional form of priogeagter SSR acquisition please refer to the
discussion in 3.&onfiguring SSR Analyzersfor that part of process. In addition you will have to

/I Configure peak detection

long numberOfTriggersPerSeg = 50, numberOfSegments =1,

double startDelta=0.1,validDelta = 0.2;

AcgrsD1_configMode(instriD 5, 0, 0);

AcqrsD1_configAvgConfig(instriD ,0, "NbrRoundRobins", &numberOfTriggersPerSeg);

AcqrsD1_configAvgConfig(instriD ,0, "NbrSegments", &numberOfSegments);
AcgrsD1_configAvgConfig(instriD ,0, "StartDeltaPosPeakV", &startDelta);
AcgrsD1_configAvgConfig(instriD ,0, "ValidDeltaPosPeakV" , &validDelta);
/I Configure histogram

long tdcMode = 1, tdcDepth = 1, tdcincr = 2, tdcTyp e=1;
AcqrsD1_configAvgConfig(instriD ,0, "TdcHistogramMode" , &tdcMode);
AcgrsD1_configAvgConfig(instrlD ,0, "TdcHistogramDepth" , &tdcDepth);
AcgrsD1_configAvgConfig(instriD ,0, "TdcHistogramincrement" , &tdclincr);
AcgrsD1_configAvgConfig(instrlD ,0, "TdcProcessType" |, &tdcType);

/I if the acquisition has segments to be histogramm ed independently

long tdcOverlay = 0;

AcqrsD1_configAvgConfig(instriD ,0, "TdcOverlaySegments" , &tdcOverlay);

Programmer’s Guide Page 29 of 66

3.7. Configuring U1084A PeakP® Analyzers

In addition to the normal Digitizer setup, such as thlggai setup and full scale, you should configure the following
settings when using the U1084A in mode:

/I Configure peak detection

Vilnt32 numberOfSamplesPerSeg = 4096;

Vilnt32 numberOfSegments = 1;

Vilnt32 numberOfTriggersPerSeg = 50;

ViReal64 startDelta=0.1,validDelta = 0.2; /I Peak slope thresholds in Volts
AcqrsD1_configMode(instriD 5, 0, 0);

AcqrsD1_configAvgConfig(instriD ,0, "NbrSamples", &numberOfSamplesPerSeg);
AcgrsD1_configAvgConfig(instriD ,0, "NbrSegments", &numberOfSegments);
AcgrsD1_configAvgConfig(instriD ,0, "NbrWaveforms", &numberOfTriggersPerSeg);
AcqrsD1_configAvgConfig(instrlD ,0, "StartDeltaPosPeakV", &startDelta);
AcqrsD1_configAvgConfig(instriD ,0, "ValidDeltaPosPeakV" , &validDelta);

If you wish to use peak interpolation, the following adufiil settings should be configured:
/I Configure peak interpolation
Vilnt32 enablelnterpolation = 1;
Vilnt32 horzReso = 2; /I Increase in horizontal resolution, in bits
Vilnt32 vertReso = 2; /I Increase in vertical resolution, in bits
AcqrsD1_configAvgConfig(instriD ,0, ‘"InterpEnable", &enablelnterpolation);
AcgrsD1_configAvgConfig(instriD ,0, "TdcHistogramHorzRes", &horzReso);
AcgrsD1_configAvgConfig(instriD ,0, "TdcHistogramVertRes", &vertReso);

The valueshorzRes@andvertResaospecify the number of bits to use for the fractional pathe peaks’ interpolated
position and amplitude, respectively.

NOTE: Enabling vertical interpolation will change the bit depth of eadtogram bin, which affects the maximum
possible number of triggers per segment and the interjwetaf the bin values. Enabling horizontal interpolation
will change the number of histogram bins per sample and thusutimber of data points available for readout. See
3.11.9Reading U1084A Peak TDC Waveforms and Histograms for more information.

3.8. Configuring AP101/AP201 Analyzers
The models AP101/AP201 have 2 operational modesnal and buffered(also calleddual-memory, controlled
with the function:
AcqrsD1_configMode(instrID, mode, 0, flags);

The valuemodecan be set to 0 (hormal) or 3 (dual-memory)miode= 3, the parametdlags sets the memory bank
into which to acquire (0 or 1).

The buffered mode uses a number of additional configurggamameters that describe the requested buffered
acquisition conditions.

Use the following short code fragment to configure a bufferedisition sequence of 800 waveforms of 5000 data
points, with a start delay of 128 samples, into memonklia

/I Configure

long nbrSamples = 5000, nbrSegments = 800;

long startDelay = 128, stopDelay = 0;

AcgrsD1_configMode(instriD , 3,0, 1);

AcqgrsD1_configAvgConfig(instriD
AcqrsD1_configAvgConfig(instriD
AcqrsD1_configAvgConfig(instriD
AcqgrsD1_configAvgConfig(instriD

, " NbrSamples ", &nbrSamples);

, " NbrSegments ", &nbrSegments);
, "StartDelay ", &startDelay);

, " StopDelay ", &stopDelay);

Comments:
e The value of the second argumenfAtmrsD1_configAvgConfigmust always be 0.

¢ When inbufferedmode, the following digitizer parameters are ignored:

Programmer’s Guide Page 30 of 66

« delayTimeof the functionAcqrsD1_configHorizontal is replaced by “StartDelay” and “StopDelay”

¢ nbrSamplesindnbrSegmentsf the functionAcqrsD1_configMemory are replaced by “NbrSamples” and
“NbrSegments” in the functioAcqrsD1_configAvgConfig

e The valuemnbrSamplesstartDelayandstopDelaymust be integer multiples of the ‘acquisition block size’,
which isalways 16 in the AP101, and 32 in the AP201. If the supplied vislum@t an integer multiple of the
‘acquisition block size’, it is truncated to the next lowateger multiple. ThuspbrSamples= 250 will be
truncated to 240 (15 * 16) on an AP101, and to 224 (7 * 823roAP201. You can query the actual value
with the functionAcgrsD1_getAvgConfig

« The valuestartDelaycontrols the time between the trigger and when thedigitized data sample is stored.
The stopDelaypermits the addition of an extra delay to the dead time betiheeacquisition of subsequent
waveforms. Its minimum value may be zero.

e Although not shown here, a call &zqrsD1_configControllO can be made in order to set a trigger veto
time to be respected after the receipt Bfrepare for Triggersignal on a Control I/O connector.

e Also not shown, is a call to the functiohcqrsD1_configAvgConfig to set a timeout value for the
automatic completion of a segment in case the real triggpaar arrives.

3.9. Configuring TC8xx Time-to-Digital Converters

Use the following short code fragment for a device configomati
/I Configure
long i, n_chan, slope = 0;
double trigLevel = 0.2;
double timout = 0.1;
Acgrs_getNbrChannels(instrumentID, &n_chan);
for(i=0; i< n_chan; i++)

AcqrsT3_configChannel(instrumentID, i+1, slope, t rigLevel, 0);
AcqrsT3_configChannel(instrumentID, -1, trigSlope, trigLevel, 0);
Comments:

e Channel numbers run from 1 to nbrChannels, not from 0! ®heron channel uses the number —1.

» The configuration functions are protected against illegah@oherent values. Thus, the system might adapt the
values you ask for. The 'query' counterpart of this funcéaorsT3_getChannel,can be interrogated to learn
what the driver did to the values.

» The granularity of a threshold value setting is limitedthg hardware that uses a 12-bit DAC covering the
desired range.

3.10. Data Acquisition

Instrument operation is preceded by configuring the instrurpandmeters and then starting the acquisition
sequence. New settings are only loaded into the module whewkdhesition is started; there is one exception to this
rule as discussed for analyzer user gate definition iiose8.5.2Readout configuration.

Similarly, you initiate an averaging operation by configuring instrument parameters, including those that control
the averaging, and then starting the combined acquisiti@raging sequence. The Averager module resets the
accumulation buffers and then acquires the requested numbeveforms, each preceded by a front-panel trigger
signal, without any software intervention. TheqrsD1_acquireEx function allows an AP100/AP200 Averager to
acquire additional data without resetting the accunanati

Until the operation is terminated, your application is fteeexecute other tasks. There are several methods of
detecting when the acquisition/averaging operation hasderkdeally, you read the averaged waveform with the
functionAcqrsD1_readDataas described below.

If you want to acquire several (averaged) waveformdeu the same conditions, there is no need to call the
AcqrsXX_config... functions again. It is sufficient to execute a loop over ‘tart, wait, read” functions. In
principle a subsequent start will happen considerably fakter the first one that was required to load the full
configuration.

Programmer’s Guide Page 31 of 66

3.10.1.Starting an Acquisition

Use the following line of code for starting an acquisifioa D1-style instrument:
AcgrsD1_acquire(instriD); /I start the acquisition

or the following line of code for starting an acquisitian a Time-to-Digital Converter:
AcqrsT3_acquire(instrumentID); /I start the acquisition

One such command is required for each module in use. Howiéwamvyeral digitizers are combined to a single
Multilnstrumentwith AS bus, only a single command is needed for the cominsadiment.

3.10.2.Checking if Ready for Trigger

If many modules are being used it may be useful to know wheynare all ready to accept a trigger. This can be
done by verifying that they are all finished with their-igger phase (PreTrigger = 0) by using the call belwwall
instruments (or the last instrument started):

Acgrs_getinstrumentinfo(instriD,"IsPreTriggerRunnin g",&PreTrigger);

3.10.3.Waiting for End of Acquisition

Usually data cannot be read from the instrument until the atiquigs terminated. The application may wait for an
acquisition to end either tpolling or bywaiting for interrupt
(A) Simple Polling: use the following code fragment for polling the intetrstatus:
ViBoolean done = 0;
long timeoutCounter = 100000;
while ((!done) && (--timeoutCounter > 0))
AcqgrsD1_acqDone(instrID, &done); /I poll for status or

/IAcqrsT3_acgDone(instrID, &done); // the Time-to- Digital Converter
equivalent

if (timeoutCounter <= 0) /[timeout, stop acquisition
STOP ACQUISITION
NOTE: The code above has the disadvantage of wasting CPU fiihe ehecking the instrument status during the
entire acquisition period. In addition, the timeout counter valueldhm®iset according to the expected acquisition
time, but the loop time depends on the CPU speed.
(B) More Efficient Polling: use this code fragment to release the polling threashfant periods:
ViBoolean done = 0;
long timeoutCounter = 100;
while ((done) && (--timeoutCounter > 0))
{
AcqgrsD1_acqDone(instriD, &done); /I poll for status or

/IAcqrsT3_acqDone(instrID, &done); // the Time-to-D igital Converter
equivalent

Sleep(2);
}
if (timeoutCounter <= 0) /l timeout, stop acquisition
STOP ACQUISITION
This code puts the polling thread to sleep for periods of 1 mdiatea letting other threads of the application or

other applications use the CPU time. Setting the timeounter to 100 means that a total timeout period of 160 m
is expected.

NOTE: This method still has some drawbacks:

» depending on the operating system, the 'Sleep’ method often harsuéagty of 10 ms or more, rounding any
smaller number up to this minimum value

» the response time of the application to the end of acquidgi@®% of the sleep time, on average. With a
granularity of 10 ms, the mean latency is therefore 5 mss, i more than 200 waveforms per second could
be acquired, because the application wastes time waitirthé acquisition to terminate.

Programmer’s Guide Page 32 of 66

(C) Waiting for Interrupt:
ViStatus status;
long timeOut = 100; /I in ms
status = AcqrsD1_waitForEndOfAcquisition(instriD, t imeOut);
if (status == ACQIRIS_ERROR_ACQ_TIMEOUT) /I timeout, stop

STOP ACQUISITION
This method combines low CPU usage with very good response t

The function enables the instrument’s 'end-of-acquisitioi@riapt and sets up a semaphore that waits for this
interrupt. It then releases the thread by 'going topsldabus letting other threads of the application or other
applications use the CPU time. The function returns as asthe interrupt occurs or when the timeout expires Not
that the timeout asked for will be clipped to a maximutoeaf 10 seconds.

The equivalent of the above for a Time-to-Digital Coteewould be:
ViStatus status;

long timeOut = 100; /I in ms
status = AcqrsT3_waitForEndOfAcquisition(instrument ID, timeOut);
i f(status == ACQIRIS_ERROR_ACQ_TIMEOUT) // timeout, stop

status = AcqrsT3_stopAcquisition(instrumentlD);

We recommend using AcqrsXX_waitForEndOfAcquisition since it is the most efficient method. The interrupt
latency is of the order of sevegs, and no CPU time is wasted.

3.10.4.Stopping/Forcing a D1-style Acquisition

The previous section shows a case where an ongoing acquisitisnbe stopped, typically because there is no
trigger. Also, in some situations you may want to use tl@izér to generate a system trigger under software
control.

If you still would like to have a valid snapshot of the cutii@put signal, you should generate a trigger signal by
software, with the functiodcqrsD1_forceTrig or AcqrsD1_forceTrigEx. Typically, the acquisition does not stop
immediately, since the digitizer may continue acquisogne additional data, depending on de¢ayTime and the
data acquisition time that were initially configured. Thtie application should again wait for the acquisition to
terminate. Forcing a trigger does not make sense for average analyzers and should not be done.
AcqrsD1_forceTrigEx allows you to generate a trigger out signal which can behsgnized with the sampling
clock if desired.

Use the following code fragment to replé&BOP ACQUISITION in the previous section:
{
AcqrsD1_forceTrig(instrID);
if (AcqrsD1_waitForEndOfAcquisition(instriD, ti meOut) ==
ACQIRIS_ERROR_ACQ_TIMEOUT)

AcqrsD1_stopAcquisition(instriD);
SCREAM, because a major error occurred

}

Note that no timeout should ever occur when waiting for aeffwig' to terminate, provided that ttimmeOut value
was made large enough. If a timeout does occurwbigd indicate a failure in the digitizer or the entire syste

For users generating triggers under software contrcyt loe desirable to do the data readout in a way thagijess
the acquired data points and ignores the correction of thegydaén from théhorPos measurement of the time from
the trigger to the next data sample. This can be done tUsifiggs parameter of th&gReadParametersstructure.

Programmer’s Guide Page 33 of 66

3.10.5.Simultaneous multibuffer Acquisition and Readout (2\R)

The U1071A-FAMILY and the 10-bit-FAMILY allow the interhanemory’s dual-port structure to be exploited.
Data acquisition and read out can be done simultanedllsity.requires the use of a slightly different programming
model.

Configure:

In addition to the usual configuration parameters, the apigicatmust enable the SAR mode by calling
AcgrsD1_configMemoryEx with 'nbrBanks = 2' (or more, 3 is a good choice).

Start:

AcqrsD1_acquire must be called to start the acquisitions.

If valid triggers are provided, from the hardware or safevdcqrsD1_forceTrigEx with ‘forceTrigType = 1Y), then
the desired segments will be filled for the current ahthalfollowing available banks.

This continues until all 'banks' are full. If a bankrisefd (see below) the process can continue by reusing that bank.

Wait for data:

To know if data is available for read out, the applicationtrpo8, usingAcqrsD1_acqDone, or wait for end of an
acquisition, using\cqrsD1_waitForEndOfAcquisition as usual. If

If either of the above operations successfully returmse#ns that at least one bank has been acquired and isaeady
be read.

Read:

When data is available, it can be read using the ust@gisD1_readDatafunctions. The data remain available for
multiple reads.

Free the bank and continue:

After all the desired data has been read the bank canrkedrfar reuse by callingcqrsD1_freeBankFurther calls
to AcgrsD1_acquire are not required. It is important to free banks as soguossible in order to ensure that the
subsequent triggers are accepted.

Configuration changes:

If the configuration settings are changed, they will only Ibaded at the next acquisition restart. Thus,
AcqrsD1_stopAcquisition must be called and all desired data should be read out. Therewheonditions can
become effective with th8tartof a new acquisition sequence.

3.10.5.1.U1084A Averager and SAR

The U1084A Averager supports a simplified version of thaitizer SAR mode. To enable it, call
AcqrsD1_configModewith ‘mode = 2’ (Averaging mode) and ‘flags = 10’ (SAR madepntrol of the Averager in
this mode is essentially the same as with SAR modBifgitizers, except that the number of banks is fixethat

3.10.6.Analyzer and PeaK®® Autoswitch mode

If with the Peak™”® mode theTdcHistogramMode parameter has been used to enable histogramming theddesire
number of acquisitions will be taken automatically. As ughel acquisition must be initialized with a call to
AcqrsD1_acquire(instrID). When the acquisition has terminated the histogram datthargbak or gate data of the
last acquisiton will be available for readout. The rmes AcqrsD1_acqDone or
AcqrsD1_waitForEndOfAcquisition must be used. With the U1084A P&k histogramming is always enabled
and this is the only operating mode available.

For all other cases the AP Analyzers implementS8R Autoswitcimode that allows the dead time between
acquisitions to be reduced to the minimum consistent Wwélréadout of the data. As usual the first acquisitiort mus
be initialized with a call té&\cqrsD1_acquire(instrID). To allow the second acquisition to start as soon aslpessi
call to AcqrsD1_processData (instrD,processType,pllows immediately. Thereafter data can be readoas sis
the processing is terminated and then the go ahead foexhacguisition can be given as desired.

Programmer’s Guide Page 34 of 66

3.10.6.1.Sequence of actions for SSR mode with event readout

The SSR Autoswitceemaphore is set by the software and cleared by the FPGA

If the readout process is longer than the acquisitioogas) théutoSwitchoccurs directly after the software raise
the AutoSwitchsemaphore.

At the moment that the ProcessingEnd interrupt occurs, thé& FR& already cleared thautoSwitch

disabled int.

disabled int
acg Bank 0 @) disabled int.
acq Bank 1 d

Processing0
q@ 3’ int
\

Processing1 \
readout K ;l
AutoSwitch 2 = @ =
Description Software implementation

0 | The software configures the mode, thacqrsD1_configModq...);

acquisition parameters, and the readout. AcqrsD1_configAvgConfig(...): ...

1 | The software starts the first acquisition. AcqrsD1_acquirg(instriD);

2 | The software sets theutoSwitchsemaphore| AcqrsD1_processDatéinstrID, processType, 1);
To ensure the shortest response time
arming function should be done on the or
of 10-20 us before the expected acquisitipn = 1,2,3, or 4 are foAP101/AP201 or
end. Peak'¢

;E;r? ocessType = 0 is used BBR& Peak'*®

3 | When the acquisition has finished, the FPGA
automatically switches the banks, starts a
new acquisition, a new processing and clears
the AutoSwitchsemaphore.

4 | Once the software receives thetatus =AcqrsD1_waitForEndOfProcessinginstriD,
ProcessingEnd interrupt, it can start thémeout);

readout. AcgrsD1_readDatginstrID, channel, &readParams

waveformArray, &wfDesc, &segDesc);

Go to 2 to continue.

Here is a sample bit of code showing this principle:

Programmer’s Guide Page 35 of 66

status=AcqrsD1_acquire(instriD); /I Start the acquisition
processType = 0;

for (;;) /Noop forever
{
status=AcqrsD1_processData(instrID, processType, 1);
status=AcqrsD1_waitForEndOfProcessing(instriD,time out);
status=AcqrsD1_readData(instrID, channel, &readPar , &adcArray,
&dataDesc, &segDesc);
}

To keep the same interface for the AP240 as was thefaadee AP101/AP201, the processing step is kept but the
“dummy” processing value is used. Actually the softwarewks which processing is needed from the setup values
sent toAcqrsD1_configAvgConfig Thus, the software must wait for the end of processimy if the “processing
mode” is set to NO_PROCESSING.

3.10.6.2.What happens when theAutoSwitch semaphore is not set

After the "processing” of an acquisition, if the semaphsneot set, the FPGA waits for further instructions. This
feature ensures that the software has finished with théudfér and gives full compatibility with older software
implementations. If you make a call #&xqrsD1_stopAcquisition you shouldn't try to read the last acquisition's
data.

3.10.6.3.Changing acquisition settings while acquiring and eading events
If you want to change any of the acquisition settingsrjost

0 terminate the current acquisition sequence

AcqrsD1_processData(instrID, processType, 2); // do a bank switch but do not
start

status = AcqrsD1_waitForEndOfProcessing(instrID, ti meout); // usual wait

/I finish reading the data associated with the old settings

AcqrsD1_readData(instrID, channel, &readParams, wav eformArray, &wfDesc,
&segDesc);

o configure the instrument for the new values and start tivesee of acquisitions
/I go back to step 0 in the table above
AcgrsD1_configAvgConfig(...); ...
AcgrsD1_acquire(instriD); ...

3.11. D1-style Data Readout

For the reading of standard waveforms #ejr sD1_r eadDat a routine should be used. The following older
routines will remain available but will no longer be dissed:

Acqr sD1_r eadChar W or m
Acqr sD1_r eadChar Sequence AcqrsD1_r eadReal Worm
Acqr sD1_r eadReal Sequence AcqrsD1_accunul at eW orm

You should use the functiokcgrsD1_readData for all new programs. The older functions will not givggort for
new instruments or new functionality. All variables of &gReadParametersstructure should be initialized; 0 can
be used for the reserved words.

For the readout of the averager data the read funditgnsD1_readData described in 3.11.Reading Digitizer
Waveforms with the Universal Read Functionshould be used witheadMode = 2 (ReadModeAvgW). For
reading data from analyzers please refer to 3.Re&ding SSR Analyzer Waveforms3.11.8Reading AP family
PeakTDC Analyzer Data and Histograms 3.11.9Reading U1084A PeakTDC Waveforms and Histogramsyr
3.11.10Reading AP101/AP201 Analyzer Waveforms

Programmer’s Guide Page 36 of 66

3.11.1.Reading Digitizer Waveforms with the Universal Red Function

For the general case, which includes the reading of owrmplex waveforms, we provide a universal read function
AcqrsD1_readData

Control of the read parameters is passed through the inpulustrAgReadParameters For the description of the
output data an array of segment descriptolsgSegmentDescriptor, and a waveform descriptor,
AqgDataDescriptor, are returned. These structures are defined in the hiéled&cgirisDataTypes.h.
The following parameter setting can be used for readsiggle waveform segment in 8-bit representation.

static long nbrSegments= 1; /I readMode = 0 requires this value

const long nbrPoints = 1000;

char dataArray[nbrPoints+32];

AgReadParameters *readPar = new AgReadParameters;

AqgDataDescriptor *dataDesc = new AgDataDescriptor;

AgSegmentDescriptor *segDesc = new AgSegmentDescrip tor[nbrSegments];
readPar->dataType = 0; /I 0 = byte

readPar->readMode = 0; /I 0 = standard waveform

readPar->nbrSegments = nbrSegments;
readPar->firstSamplelnSeg = 0;

readPar->segmentOffset = O; I/l unused parameter
readPar->firstSegment = 0;

readPar->nbrSamplesinSeg = nbrPoints;
readPar->dataArraySize = sizeof(dataArray);
readPar->segDescArraySize = sizeof(AqSegmentDescrip tor)*nbrSegments;
readPar->flags = 0;

readPar->reserved = 0;

readPar->reserved2 = 0.0;

readPar->reserved3 = 0.0;

status = AcqrsD1_readData(instrID, channel, readPar , dataArray ,
dataDesc, segDesc);

Comments:
* The segment numbers run from (htorSegments1.

» The value osegDesc->horPoss the time interval in seconds between the first data poidtthe nominal time
origin of the trigger delay. It is always in the rarigampTime, 0]. It is useful for a very precise positioniiag,
a fraction of the sampling interval, of the waveformmany applications, it can be ignored. Refer to section
3.14,HORIZONTAL PARAMETERS IN ACQUIRED WAVEFORMS, for a detailed explanation dbrPos
Return values have to be interpreted in the same way #&efother readout functions.

» Refer to the section 3.15EQUENCE ACQUISITIONS for detailed explanations on the interpretation of
segDesc->timeStampLo/Hi

« ltis important to zero the unused parameters at the en@ oé#ldPar structure. An incorrect value of flags can
be very confusing.

3.11.2.Reading Sequences of Waveforms

In certain situations, se®PPENDIX A: ESTIMATING DATA TRANSFER TIMES, it can be more efficient (in
time) to read Sequence Waveforms with readMode = adqRedeSeqW). This mode transfers all of the data from
the digitizer to the local memory in a single DMA as oppagecallingAcqrsD1_readDatamany times thus using

a transfer per segment. The price to be paid is a higharory requirement. It can also be used to transfer blufcks
segments in the case of very large memories.

For dataType = 0 or 1, the amount of memory needed (eshig

arraySize> (nbrSamplesNom + currentSegmentPadhbrSegments+1) * (dataType + 1)

Programmer’s Guide Page 37 of 66

and, for users witBegmentOffset > nbrSamplesigSe

arraySize> segmentOffséet (nbrSegments+1) * (dataType + 1)
with

segmentOffset nbrSamplesinSeg
where

« thecurrentSegmentPadepends on the acquisition configuration and can be determimegths following
call,

Acqrs_getinstrumentinfo(instrID,"TbSegmentPad”,
¤tSegmentPad);
for data that has already been acquired or
Acqrs_getinstrumentinfo(instriD,”TbNextSegmentPad”,
¤tSegmentPad);
for data to be acquired after the next call to Acqr sD1_acquire.

» thenbrSamplesNors the nominal number of samples to record and may be diffédran what was asked
for! It can be determined using the following call,

AcqrsD1_getMemory(instrID,&nbrSamplesNom,&nbrSegmen ts);

* thenbrSegmentsan either be taken from the result given just aboveaan be freely reduced to a smaller
value in the case of a partial read of the data.

You have to make sure that you ask for this informatfter $he acquisition configuration has been established. This
is the case after an acquisition has been completedheitheiw configuration.

Similarly, for dataType = 3 the amount of memory neededb\ias) is

arraySize> 8 * segmentOffset (nbrSegments+1)

with
segmentOffset nbrSamplesinSeg
and
) arraySize> 8 * segmentOffsetr (nbrSamplesNom + currentSegmentPad)brSegments * (dataTypeADC
+1

wheredataTypeADGs O for the 8-bit instruments and 1 otherwise.

The following code can be used for reading a waveform segquei&bit representation.

Programmer’s Guide Page 38 of 66

long nbrSegments = 10;

long nbrPoints = 1000;

char *dataArrayP;

long currentSegmentPad;

long nbrSamplesNom,nbrSegmentsNom;

AgReadParameters *readPar = new AgReadParameters;

AgDataDescriptor *dataDesc = new AgDataDescriptor;

AgSegmentDescriptor *segDesc = new AgSegmentDescrip tor[nbrSegments];
readPar->dataType = 0; /Il 0 = byte

readPar->readMode = 1; /' 1 = sequence waveform

readPar->nbrSegments = nbrSegments;
readPar->firstSamplelnSeg = 0;
readPar->segmentOffset = nbrPoints;
readPar->firstSegment = 0;
readPar->nbrSamplesinSeg = nbrPoints;
readPar->flags = 0O;

readPar->reserved = 0;
readPar->reserved2 = 0.0;
readPar->reserved3 = 0.0;

status = Acqrs_getinstrumentinfo
(instrID,"ThSegmentPad”,¤tSegmentPad);

/l'in this case the next call doesn’t have any surp rises
status = AcqrsD1_getMemory(instriD,
&nbrSamplesNom,&nbrSegmentsNom);

readPar->dataArraySize =
(nbrSamplesNom+currentSegmentPad)*(1+nbrSegments);

/I here we show the malloc explicitly
dataArrayP = (char *)malloc(readPar->dataArraySize) ;
readPar->segDescArraySize = sizeof(AqgSegmentDescrip tor)*nbrSegments;

status = AcqrsD1_readData(instrID, channel, readPar , dataArrayP,
dataDesc, segDesc);

Comments:

= The explicit malloc call will normally not be repeaten €very acquisition. Obviously, a larger than needed
allocation is perfectly acceptable. Also, any spacecated this way ought to be returned to the heap at
some point.

» |tis possible to allocate dataArray space that isatighed on a 32-bit boundary. This is not acceptable for
some of our modules and the AcqrsD1_readData routine wilir@in error in such a case.

3.11.3.Reading Raw Sequences of Waveforms

In the example given above the driver software in the B€& dhe work of reordering the raw data sent by the
digitizer so that it can be conveniently used from theAlatyP vector. Readout time can be slightly redueezh
further by postponing the reorder until later at a less tnitecal moment. This functionality is offered with the
readMode = 11, raw sequence waveform read. The segment dedsriptaified to include the information needed
by the user to the post-acquisition reordering; thigiires more space. The dataArray storage space requirerments ar
the same as for readMode = 11. A typical piece of tod® the reorder could look as follows:

Programmer’s Guide Page 39 of 66

for (int n=0; n<nbrSegments; n++) {
for (int i=0; i<nbrSamples; i++) {
waveformUnwrap[(n*nbrSamples)+i]=
waveformArray[n*segDescArray[n].actualSegmentSiz e+

(segDescArray[n].indexFirstPoint+i) %
segDescArray[n].actualSegmentSize];

3.11.4 Averaging Waveforms in a Digitizer
The driver includes 4 functions provided to improve perfaorceavhen averaging waveforms.

The first pair of functionsAcqrsD1_averagedDatafor any digitizer (and the oldekcqrsD1_averagedWformfor

8-bit digitizers only), are meannly for single channel, single segment operation. They averggedefined number

of waveforms, taking care of the acquisition loop intdyndihe client must supply a working arrajafaArray or
waveformArray, for internal use) and an accumulation arraynfArray). The accumulation array is reset
automatically inside the function at the beginning of eaal. &hen the function returns successfully, the
accumulation array contains the sample-by-sample sum ofvélveforms. To get the average values, the array
elements must be divided by the number of acquisitimacq. If, for each acquisition, the trigger does not arrive
within the requested timeout after the beginning of tpssition, the function returns with an error code.

The second pair of functions, AcqrsD1_accumulateData for any digitizer (and the older
AcgrsD1_accumulateWformfor 8-bit digitizers only) can be used for multi-channel ofpfensand can be called for
each acquisition the user wants to accumulate. It réedsvaveform in the module, and performs a sample-by-
sample accumulation in the client array. Here again, dlient must supply a working arragataArray or
waveformArray, for internal use) and an accumulation arrsyngArray). The client controls the acquisition, and
must reset the accumulation array appropriately.

In both cases, the allocation of the memory for the imgriarray (lataArray or waveformArray) has been left to
the client for performance reasons. Its size mustt beaat the requested number of samplesSamples+ 32, for
reasons of data alignment. The content of this working @sragt meant to be used by the client.

Please note that in both cases, sub-sample timing infiem@e. horPos, see section 3.Hgrizontal Parameters
in Acquired Waveforms) is not taken into account.

3.11.5.Reading an Averaged Waveform from an Averager

Averaged waveforms can be read out either in Volts, @&2asit accumulated sums. In either case, we recommend
the use of the general-purpose read functidogrsD1_readData rather than the obsolete function
AcqrsD1_readRealWform.

3.11.5.1.Averaged Waveforms in Volts

You should use the general-purpose funcfionrsD1_readData As long as thenodeis still set toaverager either
function automatically divides the accumulated waveform syrthb number of acquired waveforms, and returns
the result in Volts. They also return zero into thealdeshorPos tStampLoandtStampHj since they are irrelevant
in the context of an averaged waveform.

Use this code fragment for the general-purpose function:

Programmer’s Guide Page 40 of 66

AgReadParameters readParams; /I Read Definitions
AqgDataDescriptor wfDesc; /I Returned (common) waveform values
AgSegmentDescriptorAvg segDesc; /I Returned segment values

long channel = 1, nbrSamples = 20000;

double waveformArray[20000];

readParams.dataType = ReadReal64; /I Request Volts
readParams.readMode = ReadModeAvgW;

readParams.nbrSegments = 1;

readParams.firstSamplelnSeg = 0;

readParams.segmentOffset = nbrSamples;

readParams.firstSegment = 0; /I Read first segment
readParams.nbrSamplesinSeg = nbrSamples;

readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(AqSegmentDescr iptorAvg);
readParams.flags = 0;

readParams.reserved = 0;

readParams.reserved2 = 0.0;

readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, wav eformArray, &wfDesc,
&segDesc);

Note: If you call a readout function while the acquisitimodeis set tadigitizer, it will return the last acquired single
waveform, possibly with some unpredictable results.

Note: The ‘raw’ sums can be read directly with a differiemtction call (see next section). The relationship between
Volts and the raw sum is expressed by the following foamul

sumli] = (volts][i] + offset + FS/2.0) * 256 * nbrwf orms / FS

with the following definitions:

sumli] 32-bit integer sum at position i, unipolar (i.eorQoositive)

volts[i] floating point voltage at position i, as returngdtbe code fragments above
offset offset in Volts, as set with AcqrsD1_configVertica

FS full scale range in Volts, as set with AcqrsD1_ag¥éirtical

nbrWforms number of summed waveforms

The value of ‘nbrwforms’ must be known, i.e. if the avenggdrocess was interrupted before reaching the requested
number of waveforms, the formula above yields wrong resAk a check that the correct value of ‘nbrWwforms’ was
used, the value of ‘sum[i]’, before conversion to aegetr, must already be very close to an integer.
Use this code fragment for the ‘legacy’ function:

long channel = 1, segmentNumber = 0, nbrSamples = 2 0000;

long returnedSamples, tStampLo, tStampHi;

double waveformArray[20000], horPos, sampTime;

AcgrsD1_readRealWform(instrID, channel, segmentNumb er, 0, nbrSamples,
waveformArray,&returnedSamples, &horPos,
&sampTime, &tStampLo, &tStampHi);

3.11.5.2.Averaged Waveforms as 32-bit Sums
You must use the general-purpose funciaqgrsD1_readData

Use this code fragment:

Programmer’s Guide Page 41 of 66

AgReadParameters readParams; /I Read Definitions
AgDataDescriptor ~ wfDesc; /I Returned (common) waveform values
AgSegmentDescriptorAvg segDesc; /I Returned segment values

long channel = 1, nbrSamples = 20000;

long waveformArray[20000];

readParams.dataType = ReadInt32; /I Request 32-bit sums
readParams.readMode = ReadModeAvgW;

readParams.nbrSegments = 1;

readParams.firstSamplelnSeg = 0;

readParams.segmentOffset = nbrSamples;

readParams.firstSegment = 0O; /I Read first segment
readParams.nbrSamplesinSeg = nbrSamples;

readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(segDesc);

readParams.flags = 0;

readParams.reserved = 0;

readParams.reserved2 = 0.0;

readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, wav eformArray, &wfDesc,
&segDesc);

The returned data valueswaveformArrayare unipolar, i.e. the raw ADC values are coded as valiesde 0 and
255, so that the summed data values may run between 0 and @&5imber of waveforms in the sum).

3.11.6.Reading a RT Add/Subtract Averaged Waveform from anAverager
This case is significantly different than the normal ageraase described above.

The ‘raw’ sums now have to be considered as signecesallhe relationship between Volts and the raw sum is
expressed by the following formula:

sum(i] = volts[i] * 256 * nbrwforms / FS

with the same definitions as before. However, the userchasderstand if the final result corresponds to th&etds
signal or just half of it.

3.11.7.Reading SSR Analyzer Waveforms

3.11.7.1.SSR Mode Readout Data Format

In all cases data values are returned in the range [-128, Hl®Y}elationship between Volts and the raw data is
expressed by the following formula:

data[i] = (volts[i] + offset) * 256 / FS
with the following definitions:

data[i] 8-bit signed ADC value at position i

volts[i] floating point voltage at position i, as returnedtbg code fragments above
offset offset in Volts, as set with AcqrsD1_configVeatic

FS full scale range in Volts, as set with AcqrsD1_configical

In all cases you must readout the entire acquisition. You taskdor a reduced number of segments.

3.11.7.2.Raw data

The complete data should only be read out using the gatechddtadescribed below. An appropriate User Gate can
be defined to access all of the data.

Programmer’s Guide Page 42 of 66

3.11.7.3.Gated data
Data can be read for both user and threshold gate operatigreadMode = 7 (ReadModeSSRW).

The waveform descriptor structure contains the value dzat@$ize giving the total number of data bytes read. A
time stamp block, measuring the trigger time, will mdr& beginning of each segment. Segment time stamps are
mixed in with the data and not available through the usual segbasc &he entire time stamp is a 56-bit integer
counting in units of 100 ns.

Here is the Time Stamp format:

Marker block
31..24 (8 hits) 23..0 (24 bits)

Flag = 00000100 (0x04) Time Stamp MSB
Time Stamp LSB

The time stamp may be followed by a variable numbetaafkds of data with the following format:

Gate block
31..24 (8 hits) 23..0 (24 hits)
Flag = 00000000 Gate position from the origin of the acquisition (not thgnsent!)
31..0
Gate length (number of Data bytes, always a multip) of
31..24 23..16 15..8 7.0
Data3 Data2 Datal DataO

Data4

When reading such data you should carefully check that you terntioaeetly and do not read beyond the end of
the transmitted data nor generate unphysical time cooedifiat the data.

3.11.7.4.Waveform storage requirements

When using the routine AcqrsD1_readData you must allocatefersw storage and inform the driver about the
number of bytes available.

Raw data readout requires exactly the number of byteespmmding to the number of segments times the number of
data points per segment.

User gate readout for each segment requires 8 bytdseftime stamp and an overhead of 8 bytes for each gate. This
must be added to the total number of samples in all of the gatget the required length for each segment and
multiplied by the number of segments to get the waveforaydength.

For threshold gate readout the program should allocate tbe spaded for the worst case. This means 8 bytes for
the time stamp, 8 bytes for a gate block header and spadeeftotal number of samples/segment. This must be
multiplied by the number of segments to get the wavefamaydength. It should be noted that the FPGA will
generate a single gate block if there are less thatat32points "below" threshold between two desired data points.

3.11.8.Reading AP family PeakP® Analyzer Data and Histograms

3.11.8.1.Reading the gated data

The gated data of the current event can be read out asbeesori3.11.7.35ated data This is the only output
format that gives access to the segment time stamps.

3.11.8.2.Reading the data in the peak regions
The data of the peak regions in the current event casaokbout using readMode = 10 (ReadModePeakPic).

The waveform descriptor structure contains the value dzat@Bize giving the total number of data bytes read.
There will be a variable number of blocks of data with tilfing format:

Peak region block 8 points

31..24 (8 hits) 23..16 (8 hits) 15..8 (8 hits) 7..0 (8 hits)
Flag 00010010 0x00 Valid Left Valid Right
31..0 (32 hits)

Programmer’s Guide Page 43 of 66

Peak Position (=

tmax)

31..24 (8 bits)

23..16 (8 bits)

15..8 (8 bits)

7..0 (8 bits)

Sample(tmax)

Sample(tmax-1)

Sample(tmax-2)

Sample(tmax-3)

Sample(tmax+4)

Sample(tmax+3)

Sample(tmax+2)

Sample(tmax+1)

Peak region block 16 points

31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)
Flag 00010001 0x00 Valid Left Valid Right
31..0 (32 bits)

Peak Position (= tmax)

31..24 (8 hits) 23..16 (8 hits) 15..8 (8 bits) 7..0 (8 hits)

Sample(tmax-4)

Sample(tmax-5)

Sample(tmax-6)

Sample(tmax-7)

Sample(tmax)

Sample(tmax-1)

Sample(tmax-2)

Sample(tmax-3)

Sample(tmax+4)

Sample(tmax+3)

Sample(tmax+2)

Sample(tmax+1)

Sample(tmax+8)

Sample(tmax+7)

Sample(tmax+6)

Sample(tmax+5)

The peak position is counted relative to the beginning ofitsiesegment of the acquisition. Thus the position also
gives the segment number of the peak.

The sample data value is the raw data value.

Valid Left and Valid Right give the number of valid datantsi< tmax and > tmax respectivelyample(tmax-
validLeft)and Sample(tmax+validRighgre the first and last valid points, respectively.

If you need to know the segment time stamps you can reagatéé data. If the user or threshold gate parameters are
set appropriately the amount of unwanted data can be mimimize

3.11.8.3.Reading the peaks

The results for all of the peaks in the current eventbearead out using readMode = 4 (ReadModePeak).

The waveform descriptor structure contains the value dzat@bize giving the total number of data bytes read.
There may be a variable number of blocks of data witlidll@ving format:

Peak block

31..24 (8 hits) | 23 19..4 (16 bits) 3..0 (4 bits)

Flag 00010000 Unused Peak amplitude with ADC resolutign Interpolated tifyaal part of

(0x10) amplitude (1/16 LSB)

29..4 (26 bits) 3..0 (4 bits)

Peak Position with sample rate resolution Interpolated fractional part qf
position (1/16 sample interval)

The peak position is counted relative to the beginning of teedeégment of the acquisition. Thus the position also
gives the segment number of the peak.

The peak amplitude is the value acquired after baselineastibh.

When reading such data you should carefully check that you terntioaeetly and do not read beyond the end of
the transmitted data nor generate unphysical time cooedifiat the data.

If you need to know the segment time stamps you can reagatéé data. If the user or threshold gate parameters are
set appropriately the amount of unwanted data can be mimimize

3.11.8.4.Reading the histogram

The accumulated histogram can be read out using readMode =a&iNRdeHistogram). The dataType and
dataArraySize must be selected to correspond to teeobihe histogram and its bins.

Programmer’s Guide Page 44 of 66

The waveform descriptor structure contains the value actusixa giving the total number of data bytes read. The
individual histogram bins will be able to contains accunedatums of either 2**32, as ViUInt32, or 2**16, as
Viuint16.

Histogram bin is 32 bits wide

31..0

Bin0

Histogram bin is 16 bits wide

31..16 15..0

Bin 1 Bin 0

3.11.9.Reading U1084A Pealk’® Waveforms and Histograms

3.11.9.1.Reading the histogram

Use ‘readMode’ = 9 (ReadModeHistogram), ‘dataType’ = 2 (Re&d) to read out the accumulated histogram. The
nbrSamples must be selected to correspond to the size dfistegram and its bins. Note that the value for
‘nbrSamples’ should correspond to the number of bins in thegnan to read, which may be different from the
configured number of samples in the acquisition if interpmfais enabled. For example, if you have configured
‘NbrSamples’ to 1024 and TdcHistogramHorzRes’ to 3 with AcqrsD1_configAvgConfig there will be 2 = 8
bins per sample, for a total of 1024%=228192 bins available for readout.

If vertical interpolation is used, the values of thesbéiould be interpreted as fixed point fractional valuéss T
means that, ifTdcHistogramVertRes’ is set to N, the actual amplitude of the bin is the wasigned integer value
divided by 2'.

Because the data array and transfer size may have tealigned, the data array should be at least 16 bytes (4
samples) longer than the histogram data to read. @atff first valid sample in the data array, the data geecs
‘indexFirstPoint’ field must be used, which indicates the aiffin samples of the first valid sample from the
beginning of the data array.

3.11.9.2.Reading the last acquired waveform

To facilitate the visualization and interpretation of thistogram data, the U1084A permits to read the last raw
waveform which contributed to the histogram, as 8 bit sasnfleis is done using readMode = 0 (ReadModeStdW)
with dataType = 0 (ReadInt8). The procedure is the samihea®ne described in 3.11Reading Digitizer
Waveforms with the Universal Read Function.

3.11.10. Reading AP101/AP201 Analyzer Waveforms

3.11.10.1. Reading a Buffered Waveform Sequence

This section concerns AP101/AP201 Analyzers ONLYndnmal mode, you may read the acquired waveform(s) in
the same way as with any other digitizer, as describethé section 3.11D1-style Data Readout,in the
Programmer’s Guide.

In bufferedmode, you must use the functiofsqrsD1_readDatato read out the accumulated waveform sequence,
as a single data recorcE.qg. if you configured nbrSamples = 5000 and nbrSegme805=you should specify
segmentNumber = 0 and nbrSamples = 4'000'000.

Before reading the buffered data, youst switch to the other memory bank. Typically, you also M@iart a new
acquisition before readout, but it is not required. Thiddne automatically in tHt@SRmode as a consequence of the
call toAcqrsD1_processDatawith a non-zero flag value. It can also be done with atealcqrsD1_configMode

The read-function returns zero into the dataDesc variahteBos tStamplLoand tStampHj since they are
unavailable in the context of a buffered waveform seqaienc

With the functionAcqrsD1_readData use this code fragment:

Programmer’s Guide Page 45 of 66

AgReadParameters readParams; /I Read Definitions
AqgDataDescriptor dataDesc; /I Returned waveform values
AgSegmentDescriptor segDesc; /I Returned segment values

long channel = 1, nbrSamples = 4000000;

char waveformArray[4000000];
readParams.dataType = ReadInt8;
readParams.readMode = ReadModeStdW;
readParams.nbrSegments = 1;
readParams.firstSamplelnSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; /I Read first segment
readParams.nbrSamplesinSeg = nbrSamples;
readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(segDesc);
readParams.flags = 0;

readParams.reserved = 0;

readParams.reserved2 = 0.0;

readParams.reserved3 = 0.0;

memoryBank = (memoryBank+1)&0x1; /I switch to other bank

AcgrsD1_configMode(instriD, 3, 0, memoryBank);

AcgrsD1_acquire(instriD); /lessential!!

AcqrsD1_readData(instrID, channel, &readParams, wav eformArray, &dataDesc,
&segDesc);

The returned data array contains the acquired waveformsagiguous array. E.g. if you configured nbrSamples =
5000, the data points ‘waveformArray[0...4999] correspond te tfirst waveform, the data points
‘waveformArray[5000...9999]' correspond to the second wavefeten

3.11.10.2. Reading Gated Waveforms

For reading gated waveforms the actual desired gathsuld be set with the setup function
AcqrsD1_configSetupArray. This function should be called befofeqrsD1_acquire is invoked to acquire any
data that needs to be read using these gates. To rdathbagate value#\cqrsD1_getSetupArray has to be used.
An example for the two routines is shown in the follogvcode:

const int NbrGates = 64;

long channelNbr = 0;

long configObj = AvgGate;

long lastGate = NbrGates;
AqGateParameters gatePara[NbrGates];

for(int i=0;i<NbrGates;i++)

{
gatePara[i]. GateLength = 256;
gatePara[i].GatePos = i*gatePara[i]. GateLength;
}
AcgrsD1_configSetupArray(instrID, channelNbr, confi gObj, NbrGates,

gatePara);
The conditionGateLength>= 4 is required. BotlsateLengtrandGatePosmust be multiples of 4.
You can read the gate parameters back, with this code:

Programmer’s Guide Page 46 of 66

const int NbrGates = 64;

long channelNbr = 0;

long configObj = AvgGate;

long lastGate;

AqGateParameters gatePara[NbrGates];

AcgrsD1_getSetupArray (instriD, channelNbr, configO bj, NbrGates,
gatePara, &lastGate);

Make sure to use a pointer to the last argument, sin@tuitns the number of gatdastGatecannot exceed the
number of gates being written.

To read the gated waveforms, use the functiogrsD1_readData

AgReadParameters readParams; /I Read Definitions
AgDataDescriptor dataDesc; /I Returned waveform values
AgqSegmentDescriptor segDesc; /I Returned segment values

long channel = 1, nbrSamples = 20000;

char waveformArray[20000];

readParams.dataType = ReadInt8;
readParams.readMode = ReadModeGateW,
readParams.nbrSegments = 1,
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; /I Read first segment
readParams.nbrSamplesinSeg = nbrSamples;
readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(segDesc);
readParams.flags = 0;

readParams.reserved = 0;

readParams.reserved2 = 0.0;

readParams.reserved3 = 0.0;

AcgrsD1_readData(instrID, channel, &readParams, wav eformArray, &dataDesc,
&segDesc);
The returned data array contains the acquired wavef@rasantiguous array of dataDesc—

>returnedSamplesbytes.

Note: Make sure that theaveformArrayis large enough to hold the sum of @hteLength’'dimes thenbrSegments.
As a rule, thewaveformArrayhas to have as a minimum size the sum of all the giaés timesnbrSegmentg
waveformArray > £ GatelLength)’nbrSegments.)

Note: If, for each gate, the suifGatePos + GatelLengthg¢xceeds theabrSamplesinSedgsatePosis reduced to
satisfy GatePos + GateLength) <= nbrSamplesinSEdghis is not sufficientGateLengths shortened to satisfy that
condition.

3.11.10.3. Data Processing before Readout

In bufferedmode. the AP101 offers the capability of processing theised data before readout. This operation
must be explicitly requested by the application, after theatafaisition has terminated.

Depending on the processing algorithms used, you may hgvepare the data processing by setting the appropriate
parameters with the functiokcqrsD1_configSetupArray.

In the ‘peak-detect’ mode, the AP101 will return for eacte gaxactly 2 peaks, first the positive and then the
negative one (some of which might be marked as ‘inv#liab valid peak exists!). Thus, you should define the gates
in the same way as described in the previous section.

A typical acquisition/processing/readout sequence insatitch bufferedmode would be:

Programmer’s Guide Page 47 of 66

1. Configure the APXXX for appropriate channel, timebasgg#i, and gate parameters.
Start the first acquisition.

3. Give the order to switch banks and start the next a¢puisind data processing on the current acquisition
as soon as possible. The processing can overlap witatheacquisition since it automatically deals with
the memory bank that is not selected for acquisitiogolf need to read the original data choose the "no
processing" option.

4. Wait for the processing to be terminated, read the processeld. Note that the processing will not destroy
the originally acquired data.

5. You may now do any additional processing in your computer. Mervgou cannot read the original data
at this point without perturbing the acquisition.

6. Now that you have finished all work with the current dada can loop to (3) above.
A typical acquisition/processing/readout sequence in @kplifferedmode would be:

7. Configure the APXO01 for appropriate channel, timebagggdr, and gate parameters.

8. Start the first acquisition.

9. Wait for the first acquisition to terminate.

10. Switch the memory bank and start a new acquisition irs¢foend bank. Note that you must start the new
acquisition to make the memory bank switch happen.

11. Start data processing. This can overlap with the data édguisince it automatically deals with the
memory bank that is not selected for acquisition.

12. After processing has terminated, read the processed.rB&té that the processing will not destroy the
originally acquired data.

13. You may now do any additional processing in your computer. Memygou cannot read the original data
at this point without perturbing the acquisition.

14. Wait for the new acquisition to terminate.
15. If you need to read the original data, e.qg. for diagnosticthe processing algorithm, you may now do so.
16. Loop to (4.) above.

You need to implement a method to interrupt the infinitg ladhenever required. However, you should make sure
that you leave the acquisition in a well-determined gtatéuture operation.

The explicit acquisition/processing/readout sequence desdcaibove is shown in the following code:

AgReadParameters readParams; /I Read Definitions
AqgDataDescriptor dataDesc; /I Returned waveform values
long channel = 1, segmentNumber = 0;

long nbrPeaks = 2 * nbrGates; /I nbrGates is defined by user

long waveformArray[2 * nbrPeaks];

long memoryBank = 0, timeout = 5000; // timeout =5 seconds

/I Insert whatever is required for Vertical
/I and Trigger configuration

AcqrsD1_configMode(instrID, 3, 0, memoryBank);
AcgrsD1_acquire(instriD); /I Acquire into bank 0
AcgrsD1_waitForEndOfAcquisition(instriD, timeout);

/I' At this point, you should check the return value !

Programmer’s Guide Page 48 of 66

bool finished = false;

while(!finished)

{
memoryBank = (memoryBank + 1)&0x1; /I switch to other bank
AcqrsD1_configMode(instrID, 3, 0, memoryBank);
AcqrsD1_acquire(instriD); /I start new acquisition
AcqrsD1_processData(instriD, 0, 0); /I start processing
AcqrsD1_waitForEndOfProcessing(instrID, timeout);
/I At this point, you should check the return value !

readParams.dataType = ReadReal64;

readParams.readMode = ReadModePeak;

readParams.nbrSegments = 1;

readParams.firstSamplelnSeg = 0;

readParams.segmentOffset = 0;

readParams.firstSegment = 0O; /I Read first segment
readParams.nbrSamplesinSeg = 2* nbrPeaks; /I pos and neg peak
readParams.dataArraySize = 2 * sizeof(double) * nb rPeaks;
readParams.segDescArraySize = 0;

readParams.flags = 0;

readParams.reserved = 0;

readParams.reserved2 = 0.0;

readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, wa veformArray,
&dataDesc, NULL);

/l...analyse and store data

AcqrsD1_waitForEndOfAcquisition(instriD, timeout);
/l...read original data if desired
/l...check on loop termination conditions and set ‘finished’

}

The returnedvaveformArray contains exactly 2tbrGatespeaks, each of which is described by 2 double precisio
floating-point values. The first pair of doubles consathe positive peak position, within the gate (in units of
samples), and the amplitude (in codes). The second paloubles contains the negative peak position and its
amplitude. The peak amplitude is a signed number in the range
[-128.0,+127.0] with the two extreme values indicating underfigerflow conditions. The peak position is
normally positive. Negative values are used for warnilmgparticular, the value —DBL_MAX indicates that no peak
was found. The #define of DBL_MAX can be found in the flo@tclude file. Each peak contains the following two
words:

0-63
Peak Position (in samples from start of gate)

0-63
Peak Amplitude (in ADC units)

Use the following code to obtain the peak positions for theyéte:
double *positivePeakPos = &waveformArray[0+8*i];
double *negativePeakPos = &waveformArray[4+8*i];

Programmer’s Guide Page 49 of 66

3.12. T3-style Data Readout
For the reading of timer data theqr sT3_r eadDat a routine should be used.

Control of the read parameters is passed through the inputustrdc T3ReadParameters The output format is
determined by these values as well as the type of modukee.

TC890 TOF modules use a direct read out of the moduledatataaximum throughput. The PC does not have to
analyze the data coming from the module. The data are patkettbyte timer hits for each signal.

TC840 and TC842 modules have a two-phase readout. The Adriies software in the PC analyzes the raw data as
read from the modules to derive the final timer resiltgse are presented in double floating point format or, for the
TC840 only, an integer count of the time in the specifidé granularity of the module.

The TC890 data are coded on 32 bits as described belosvinthides:
= Event on the channel 1 to 6, time relative to the common chawaet

= Event on the common input, each common event are numbegrdil®/common event that are lost if the
internal Buffer is Full.

= Aux IO Event Marker.

= Switch marker.

[31] Overflow Indicates the time value is not good because theirealegounter reached its maximum value.
When the data is a marker this bit is also set ‘1.
if [30..28] = 0 to 6 => channel overflow
if [30..28] = 7 => marker

[30..28] DataType Type of the current data, Common channel, Channel numbeareM
0 for common (or channel 0)
1-6 for channel 1-6
7 denote the data is a Marker

[27..0] Time Channel O: The value plus one is the number of hit ofdhemon channel
Channel 1 to 6: The value is the time between the ethamd the common.
Marker: Value=0 Switch marker: Switch from Auxilianpiuts (I/O Aux 1 or /O Aux 2).

Value=1 Switch marker: Common channel Event count.
Value=2 Switch marker: Memory Full.
Value=16 Marker: Auxiliary inputs marker (I/O Aux 1 oDIAux 2).

3.13. Trigger Delay and Horizontal Waveform Position

When using a digitizer the user has 3 instrument setup variafilesvhich to position the acquired waveform in
time:

* samplnterval: the sampling interval (inverse of the sampling frequency
* nbrSamples the number of samples to acquire
* delayTime: the nominal trigger delay

samplnterval

Trigger

delayTime

nbrSamples

Programmer’s Guide Page 50 of 66

By convention, the nominal trigger delay is taken relativéhe beginning of the trace, i.e. relative to ttieddge of

a real or virtual display grid. It can be interpretedtestime from the trigger to the start of waveform regaydIf

this number is positive, recording staafer the trigger (post-trigger acquisition). If it is negativecording starts
before the trigger (pre-trigger acquisition). In reality, thegaisition always runs before any trigger occurs, and
delayTime controls the time between the trigger and the stopping afdtpeisition:

delayTime Time until Acquisition Stop ~ Comments
- samplinterval 0 Trigger point is at the right edge of grid, i.e. atehd of
* nbrSamples the nominal waveform (100 % pre-trigger)
<0 samplnterval * nbrSamples Trigger point is at the desired point within the grid
+ delayTime
0 samplnterval * nbrSamples Trigger point is at the left edge of grid, i.e. at the

beginning of the nominal waveform (0 % pre-trigger)

>0 samplnterval * nbrSamples Trigger point is to the left of the grid, i.e. before the
+ delayTime beginning of the nominal waveform (post-trigger)

Note thatdelayTime is not allowed to become more negative thaaampinterval * nbrSamples because it is
impossible to stop the acquisitibeforethe trigger occurs.

3.14. Horizontal Parameters in Acquired Waveforms

Triggers usually occur asynchronously with respect tostrapling clock. Thus, between similar events, the time
from the trigger to the next sampling clock varies randomiaé range [0 ... samplnterval].

The true time reference for any waveform is the tniggent, not the sampling times, because the trigger is attached
to a given feature of the waveform (e.g. a transitiora giredetermined level). For highly stable displays, it is
important to know the time between the trigger and the saxtpling clock to within a fraction of the sampling
interval, and to place the displayed data points in suchyahaathe trigger point stays at a constant position. Ehis i
particularly important for persistence displays orhhigzoomed random-interleaved displays, as generated from
overlaid segments, where a single waveform (or wavef@gment) contributes only a few data points to the
display.

Acqiris digitizers feature a Trigger Time InterpoladiTl), which measures the time between the triggenteaad

the next sampling clock to a fraction of the sampling intetvalermits very precise positioning of the acquired trace
in highly zoomed displays, particularly when multiple acijoiss of the same signal are used. In many other
applications, this value can be ignored.

The following drawing completes the description of a -‘téalwaveform:

Time Origin
sampinterval First data_point /
Trigger
r:&ﬂ\
| hoffset D horPosV e ‘\
R ~
delayTime -
nbrSamples

Programmer’s Guide Page 51 of 66

» The value ofdelayTime positions exactly the left edge of the display (or theceraminal beginning of the
waveform) with respect to the “stable” trigger timehigh is the real reference point. We define the time 'trigge
time + delayTime' as the time origin for the wavefomich is equivalent to saying that the trigger always
occurs exactly at the timeelayTime.

» The first data point of the waveform is defined asléiséacquired data poirteforethe time origin. It is indexed
with i = 0 in the formula below.

NOTE: Itisimportant torealizethat if a single ssgment isread (e.g. with AcgrsD1_readData) the first data point
will be dataArray[readPar.indexFirstPoint] and that thisis not necessarily the first point given.

* The exactposition of the first data point with respect to the timgiaris a negative numbdrorPos It is by
definition in the range amplnterval, 0].

* The time between the trigger and the first data pbiDffset need not be recorded since it can always be
computed aslelayTime + horPos Note:delayTime + horPos< delayTime by definition.

* In order to obtain a very stable image, even in a highly zdodigplay, the user only needs to position the
acquired data points with the aid lmbrPos by using the following formula for the x-position of poinith
respect to the left edge of the display:

x[i] = horPos +i* samplinterval

3.15. Sequence Acquisitions

For digitizers in Sequence acquisition mode, multiple wawve$ are acquired autonomously, with a single start
commandAcqrsD1_acquire Whenever a trigger is received, the current acquisg@gment is normally terminated.
The digitizer then automatically initializes another asijign into the next memory segment, until all requested
segments are filled.

3.16. Time stamps

The U1071A and 10-bit-FAMILY of digitizers implement a &nstamp to measure the time of the trigger for each
acquisition segment. These time stamps can be ussaldulate the time between any two triggers for any giair
triggers over multiple acquisitions.

The other, “older” Acqiris digitizers feature a 'tim@mmp' in order to measure the time between the triggers of
consecutive segments in the same acquisition. In fhet,time stamp counter is started when the Sequence
acquisition is started, and keeps counting during the esegaence. The difference between the time stamps of any
pair of (not necessarily adjacent) segments is the titvecla their respective triggers.

The time stamp value is returned as a 64-bit intégamits of picoseconds, with a resolution identical to diahe
trigger time interpolator (see the appropriate product Uswnual). The waveform readout function
AcqrsD1_readDatareturns the time stamp value as 2 32-bit values. In dalelo time differences, you should
transform them into a 64-bit integer:

* InVisual C/C++, use the 64-integerint64 as follows:

__int64 timeStamp = timeStampHi;
timeStamp = timeStamp<<32 + (unsigned long)timeStam pLo;

Arithmetic operations between such integers can be dondlashairter integers.

You also can convert a time stamp difference to an extendsthfigpoint number, and do arithmetic operations
as with other variables:

double deltaTime = (double)(timeStamp — previousSta mp);
* In Visual Basic, use a decimdghriant variable as follows:

Const Twol6 As Variant = 65536

Const Two32 As Variant = Two16 * Twol6

Dim timeStamp As Variant, previousStamp as Variant
Dim timeDiff as Variant, xStampLo as Variant

If (tStampLo < 0) Then

xStampLo = Two32 — Abs(tStampLo)
Else

Programmer’s Guide Page 52 of 66

> >

xStampLo = tStampLo
End If
timeStamp = CDec(tStampHi * Two32) + xStampLo
timeDiff = timeStamp — previousStamp

Arithmetic operations between such decimal variants can beadowéh other integer variables.
The manipulation ofStampLo is somewhat complicated because this variable igreedi32-bit integer, but
must be added as an unsigned integer to the (shif&hpHi.

* In LabVIEW, convert the time stamp to an extended flgatioint number, and do arithmetic operations as with
other variables.

* In LabWindows/CVI, the easiest way to manipulate time ptai® to convert them first to doubles:
ViReal64 dlow, dhigh, tstamp;
dlow = (ViReal64)low;
dhigh = (ViReal64)high;
tsamp = dlow + 4294967296.0 * dhigh;

3.17. External Clock and Reference

The external reference modeplaces the internal 10 MHz reference clock with anreateone at the same or a
similar frequency, from which the actual sampling clociesived.

In theexternal clock modea waveform is sampled according to a clock derived framsitions of the external clock
signal through the user-defined threshold. We distinguish betearginuousexternal clock operation arstiart/stop
external clock operation.

All external clock/reference modes are configured withftihetion AcqrsD1_configExtClock
The external clock/reference signal should have a pedkareplitude of at least
e 0.5V for the DC135/DC140/DC211A/DC241A/DC271A/DC271AR afebit-FAMILY,

e 1V for the other DC271-FAMILY digitizers, the U1071A-FAMY, the 12-bit-FAMILY, the AC/SC
Analyzers, and the AP Averagers and Analyzers,

e 2V peak to peak for all other models.

. TheinputThreshold value should be set to the center of the signal.

3.17.1.External Reference

This external referencenode €lockType = 2) simply replaces the internal 10 MHz reference clock aiit external
one at the same or a similar frequency. Alternativeiyy the DC135/DC140/DC211/DC211A/DC241/
DC241A/DC271/DC271A/DC271AR, the AC/SC and the 10-bit-FAMIltNe PXI 10 MHz System Clock can be
used as the reference.

If you need a more precise timebase, or want to ensatehe timebases of several modules are at exactiathe
frequency, you should ustockType = 2 in the function, and apply an external 10 MHz signaloffier settings of
the digitizer are exactly the same as with an interclaick.

If you need to sample at a rate that deviates from ¢imeimal values, you may apply an external reference signal
with a constant frequency in the range of

e [9.97, 10.03] MHz for the U1071A-FAMILY and the 10-bit-FAMY
* [9.0, 11.0] MHz for the 12-bit-FAMILY
e [9.0, 10.2] MHz for all other modules.

You need to correct for the reference frequency differengeur application since the digitizer and the driver do not
take the deviations into account.

NOTE: A square wave with better than 5 ns risetime should bd. (d@s is needed to avoid false or multiple
transitions on a slower risetime signal. Alternatively, 2V amplitude signal could be used.

NOTE: When using this capability please make sure that the moduatarisctly synchronized on the signal. This
might require adjusting the threshold. If this is not the dasedata will be useless and calibration can fail in rather
obscure ways.

Programmer’s Guide Page 53 of 66

3.17.2 External Clock (Continuous)

The continuous external clocknode €lockType = 1) permits the application to the digitizer of a cortum
constant frequency, external clock in order to sample atrhitrary frequency. This mode uses normal triggering,
from the input signal or through the external trigger input

We need to distinguish betweérst generationdigitizers (models DP105, DP106, DP110, DP111, DP210, DP211,
DP212, DC110, DC240, DC265, DC27@gcond generatiowligitizers of the DC271-FAMILY (models DC135,
DC140, DC211, DC211A, DC241, DC241A, DC271, DC271A, DC271AR, DPZdR235, DP240), the
AP240/AP235 signal analyzer platforms, the AC210/AC240/SC210/SCR4dlyzars, and the 12-bit-FAMILY
(DC440, DC438, DC436, DP310, DP308, DP306), #mdd generationdigitizers (10-bit-FAMILY, U1071A-
FAMILY) since their behavior in this mode is quite diffeteAP200/AP201/AP100/AP101 Averagers and Analyzers
are considered to bWast generationrmodules.

The horizontal control parametesampinterval and delayTime as defined byAcqrsD1_configHorizontal are
ignored. You need to give the driver the current input fregqueamd the requested sampling frequency with the
variablesnputFrequency andsampFrequencyof the functionAcqrsD1_configExtClock

The input frequencinputFrequency must be between
= 10 MHz and 500 MHz in the first generation models,

= 20 MHz and 2000 MHz for the second generation DC271-FAMIWM071A-FAMILY, AC/SC, or
AP240/AP235,

= 100 MHz and the value for the maximum allowed frequency i thbit-FAMILY.

Note that for normal operation of Revision B DC4xx and RevisiddP8xx 12-bit-FAMILY digitizers the sFmax
for each converter should be kept between 50 and 110 Mutthermore, the sFmax for these older DC438 and
DP308 units is the same as the sampling frequency.

The acceptable values fesampFrequencyare dividers (sFmax/n) of the maximum allowed samplinguieacy,
sFmax, where n = 1,2,4,8,20,40,80,200,... The sFmax depends on thkeandden the number of combined
channelsibrConvertersPerChannelof AcqrsD1_configChannelCombination

Model Input sFmax vs. nbrConvertersPerChannel
Frequency
range (MHz)
1 2 4
DC122 1000 — 2000 2 x inputFrequency
DC135 20 - 2000 Y, x inputFrequency Y2 x inputFrequency
DC140 20 - 2000 % x inputFrequency 1 x inputFrequency
DC152 200 -2000 1 xinputFrequency 2 x inputFrequency
DC211/DC211A 20 — 2000 2 x inputFrequency
DC222 1000 — 2000 4 x inputFrequency
DC241/DC241A 20 - 2000 1 x inputFrequency 2 x inputFrequency
DC252 1000 — 2000 2 x inputFrequency 4 x inputFrequency
DC271/DC271A 20 - 2000 % x inputFrequency 1 x inputFrequency 2 x inputFrequency
/ DC271AR
DC282 200 -2000 1 xinputFrequency 2 xinputFrequency 4 x irggquéncy
DC436 Rev B 100 — 200 % x inputFrequency
DC438 100 — 400 % x inputFrequency
DC440 100 — 420 1 x inputFrequency
DC440/438 Rev B 100 - 400 1 x inputFrequency
DP1400 20 — 2000 % x inputFrequency 1 x inputFrequency
DP214 20 - 2000 1 x inputFrequency
DP235/AP235 20 -1000 % x inputFrequency 1 x inputFrequency
DP240/AP240 20 — 2000 % x inputFrequency 1 x inputFrequency
DP306 100 - 200 % x inputFrequency

Programmer’s Guide

Page 54 of 66

Model Input sFmax vs. nbrConvertersPerChannel
Frequency
range (MHz)

1 2 4

DP306 Rev A 100 — 400 % x inputFrequency

DP308 100 - 400 % x inputFrequency

DP308 Rev A 100 — 400 1 x inputFrequency

DP310 100 — 420 1 x inputFrequency

DP310 Rev A 100 — 400 1 x inputFrequency

AC210/SC210 20 — 2000 % x inputFrequency

AC240/SC240 20 — 2000 % x inputFrequency 1 x inputFrequency

1% generation 100 - 500 1 x inputFrequency

Example: When using a DC241 with 2 combined channels, and amalxtdock frequency of 1800 MHz (=
inputFrequency), the possible sampling frequencies are 3% G8 GS/s, 900 MS/s and 450 MS/s.

The ratio of sFmax to inputFrequency can also be learnedruattime by using a call to
Acgrs_getinstrumentinfo(instrID," ExtCkRatio", &ratio).

The system computes the required memory overhead (in alafales) on the basis of the curreampFrequency
and nbrConvertersPerChannel Use the functionAcqrsD1_bestNominalSamplesto obtain the maximum
available memory, after settinigese parameters

The equivalent oflelayTime is defined with the valuelelayNbrSamples which only applies to external clock
operation. The actual delay value is easily computed as f&llow

delay = @lelayNbrSamples—nbrSamples / sampFrequency

Example: In a T generation module with an external clock running at 200 MHmufwanted to acquire 2000 data
points at 50 MS/s with the trigger point at the end of the €juarter of the time window, you would use the code:

AcgrsD1_configMemory(instriD,2000,1);
AcqrsD1_configExtClock(instrID,1,threshold, 1500, 2 .0e+8, 5.0e+7);
AcqrsD1_acquire(instriD); // start the acquisition
AcgrsD1_waitForEndOfAcquisition(instrID, timeOut);

The value ofdelayNbrSamplesis 1500 because 500 points need to be acqbieéore and 1500 pointgfter the
trigger, in order to position the trigger point at tieqlarter of the time window.

Equivalently, you could have computed the time window to b® X0 ns = 4Qis. The delay would therefore have
to be -10us to get the trigger point to the" Quarter of the time window. SincebrSamples = 2000 and
sampFrequency= 5.0e+7, you would obtattelayNbrSamples= 1500.

Since the sampling frequency is known in this clock modeutir the variablsampFrequency any read functions
correctly return the value of the sampling interval.

In addition, if the user-supplied clock frequernegutFrequency is > 800 MHz on DC271-FAMILY digitizers or in

all cases for 10-bit and 12-bit digitizers, the systemiemtly measures the vald®rPos and returns it with any
waveform read function, such &cqrsD1_readData Thus, the time position of the sampled data pointsbean
known to within a small fraction of the sampling intervyagrmitting very precise timing measurements as with the
internal clock. However, the digitizer must be calibragdthe external clock frequency in use, whenever
inputFrequency or sampFrequencyare changed. Use this code:

I/l We assume that a normal calibration has been don e, either

/I during initialization, or explicitly

AcgrsD1_configextCIk(..) /I Set to (cont) Ext Clk

/I Make sure to apply the same external frequency a s the value

/I 'inputFrequency’, set in the function call above
Acqrs_calibrateEx(instriD, 2, 0, 0);

The functionAcqrs_calibrateEx with calType = 2 readjusts some timing calibration constants, but doesadify
any vertical adjustment values, such as gain or offset.

In first generationdigitizers, or wheninputFrequency is < 800 MHz in thesecond generatiomigitizers (or
AP/AC/SC analyzers in the digitizer mode), the data readifmgcwill returnhorPos = 0.0, equivalent to a timing

Programmer’s Guide Page 55 of 66

uncertainty of + 0.5 samples. For implementation reasopsadijuired waveform in fact has a timing uncertainty
that is twice as large, i.e. £ 1 samples. In this cdmetrigger time stamps of the sequence acquisition medeca
available.

Depending on the ratio acfampFrequency/inputFrequency, a waveform is sampled either on negative-going
transitions of the external clock signal through the user-géfthreshold or, when the ratio is > 1, on both of the
transitions.

NOTE: First generation digitizers that have more than one eaev/channel (DC240, DP210, and DP211) will
generate two data samples for each sampling interval. You dimasinsion your acquisition and readout for twice
the normal amout of data and can then either, drop evitigr@ata sample from the record, or average the two data
values which could enhance the signal to noise ratio.

3.17.3.External Clock (Start/Stop)

The start/stop external clocknode ¢lockType = 4) permits the application of a (variable) externatkldt should

not be used for the 10-bit-FAMILY, 12-bit-FAMILY, or UZQA-FAMILY digitizers. The clock can be setup to
give bursts during which the frequency is between 10 itz 500 MHz. The first sample of each burst may have to
be ignored. The waveform is sampled on positive-going itrans of the external clock signal through the user-
defined threshold. Thus, the sampling rate is equéletanput frequency.

For digitizers and Averagers/Analyzers in the digitzer mduere is no concept of trigger when a Start/Stop clock is
used. Therefore, all trigger parameters will be ignoreds Hiso means that there is no concept of sequence
acquisition. Operation in a channel combined mode is not pessibl

The AC/SC Analyzers can be used in this mode. A contindlmak frequency of up to 800 MHz, to give 800 MS/s
sampling, will work.

In this mode, the horizontal control paramesamplnterval anddelayTime are completely ignored, as well as the
value ofdelayNbrSamples The waveform length is, as usual, controlled by the narabsamples in the function
AcqrsD1_configMemory. Careful synchronization between the function callféodriver and the generation of the
clock burst is required.

There are 2 ways of terminating an acquisition in the/stap mode:

1. Generate a number of clock transitions that correspondglgxa the requested number of samples, and
stop the acquisition with the functioAcqgrsD1_stopAcquisition This requires that the host computer
obtain some external signal when the clock sequence is teeahinat

2. Generate some extra clock transitions, which will fullgmi@ate the acquisition. You can then use the
functionsAcqrsD1_acgDoneor AcqrsD1_waitForEndOfAcquisition to detect the end of acquisition.

Examplefor Termination (1): if you wanted to acquire 20 wavafsrof 2000 data points each, at a sampling rate of
33.3 MHz, and a time distance of 5 pus between the wawsfgrou would use:

AcgrsD1_configMemory(instriD, 40000, 1);

AcqrsD1_configExtClock(instrID, 4, threshold, 0, 0. , 0.);
AcgrsD1_acquire(instriD); /[start the acquisition
= Generate 20 bursts of 2000 clock pulses at 33.3 MH z. At the end, you need
to inform the host computer to terminate the acquis ition and:

AcqrsD1_stopAcquisition(instriD);
AcgrsD1_readXXXWform(instriD, . . .);

Note that the sampling rate and the time between bursts lvaivesidence on the configuration parameters of the
digitizer, i.e. they appear nowhere.

Examplefor Termination (2): if you wanted to acquire 5000 wavef®ioh200 data points each, you would write:

Programmer’s Guide Page 56 of 66

> B>

AcgrsD1_configMemory(instriD, 100000, 1);

AcgrsD1_configextClock(instriD, 4, threshold, 0, 0. 0, 0.0);
AcgrsD1_acquire(instriD); /[start the acquisition
= Generate 5000 bursts of 200 clock pulses at the re quired frequency. At the
end, you need to generate > 160/320/640 additional clock pulses.

AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);
AcgrsD1_readXXXWform(instriD, . . .);

The 320 (640 on 2 GS/s, or 1280 on 4 GS/s digitizers) extra abmthkd be generated by 1 or more extra bursts of
200 clock cycles or a special burst. There is no riskvefwriting the earliest data, since the memonyaiscircular
in this mode.

Comments valid for both termination mechanisms:

Although the functiorAcqrsD1_acquire sets it to the ready state, the digitizer cannot dgtuatord data while the
external clock is idle. The clock burst must stdter the digitizer has been started, and it must start ierg clean
way, i.e. the first pulse must be already well overttineshold and its width must bel ns.

The digitizer sees the multiple clock bursts as a siaghuisition. It knows neither the sampling frequency, nor the
time difference between the waveforms. It simply aegua number of data points. In termination mechanism (2) it
also records the extraneous points and then stops.

When reading the data, the multiple waveforms appear as gumnsi waveform. The only way of distinguishing
one waveform from the other is by counting samplestheefirst 2000 samples belong to thévitaveform, the next
2000 to the ?' etc. It is therefore imperative to exactly control thenber of clocks in a burst.

NOTE: If the time difference between 2 bursts is > 100 nsdidigzer tends to drift into saturation, from which it
has to recover when the next burst resumes. The firstsdamgle of such a burst is thus invalid. In many cases, this
first data sample is sufficiently different from the rdghe waveform that it can serve as a ‘segment marker’.

NOTE: Digitizers that have more than one converter/channel (DC212240, DC241, DP210, DP211, and
DP214) will generate two (four-for theDC211) data samples fohesmpling interval. You must dimension your
acquisition and readout for twice (4x) the normal amout of dat@ can then either, drop the extra data sample from
the record, or average the data values which could enhancegih& $o noise ratio.

3.18. AS bus Operation

The AS bus and AS bus 2 are intended to synchronize a nwhbignilar CompactPCIl modules, in order to make
them appear as a single instrument with more channéks. & number of digitizers have been combined with the
functions AcqrsD1_multilnstrAutoDefine (or AcgrsD1_multiinstrDefine for AS bus only), each combined
instrument can be controlled, when using iitstrumentID, with the same functions as single digitizers. We
recommend the use of the automatic function, unless you peetalscontrol over the order in which the digitizers
are numbered within thultiinstrument Please refer to the functidxcqrsD1_multiinstrAutoDefine, for details.

If you mix modules (of the same model number) with differemnony lengths, you must make sure that you never
use more than the shortest memory length available. Ggeryou will get invalid data on the short memory

modules. Under AS bus, the automatic function alwaygmsshe clock master role to a module with the shortest
memory, with the result that the functidrqrsD1_configMemory refuses to accept memory lengths beyond the
shortest. When configuring manually, you might want to dostirae. Otherwise, you need to explicitly check your
requested memory lengths.

3.18.1.Channel Numbering with AS bus

In aMultilnstrument input channels are numbered from hboChannels. The number of channels can be retrieved
with the function call:

Acqrs_getNbrChannels(instrID, &nbrChannels);

Channel 1 corresponds to channel 1 of module 0. Channel numbegase first through module 0, then through
modules 1, 2 etc.

For Acqiris CC10x crates whenMultilnstrumentis defined withAcgrsD1_multilnstrAutoDefine, module 0 is
always closest to the controller slot (in Acqiris CCl€rates), whereas witthcqrsD1_multilnstrDefine, it
corresponds to the first module in the initializing list. Theqitis CC121 crates have a different ordering; please
refer to the Acqiris CC121 CompactPCI Crate User Manual.

Programmer’s Guide Page 57 of 66

E.g. when combining 3 DC270 4-channel digitizers, you would amnel number 10 in the function calls
config/get_Multilnput , config/get_Vertical andreadData, if you wanted to refer to Input 2 of the third DC270.

Channel numbering does not depend on which module is the acitlalocltrigger master.

3.18.2.Trigger Source Numbering with AS bus

Acqiris digitizers do not necessarily have as many intetmgders as channel inputs, nor exactly one external
trigger. You should retrieve, for eveljultiinstrument additional information with the following calls:

Acqrs_getinstrumentinfo(instriD , "NbrinternalTriggers", &nbrintTrigs);
Acqrs_getinstrumentinfo(instriD , "NbrExternalTriggers", &nbrExtTrigs);
Acqrs_getinstrumentinfo(instriD , "NbrModulesIninstrument”, &nbrModules);

nbrintTrigsPerModule = nbrintTrigs /nbrModules;
nbrExtTrigsPerModule = nbrExtTrigs /nbrModules;

In aMultiinstrumentcomposed of 4 DC240 (2 channel, 2 GS/s digitizers), you would ig¢ernal trigger sources, 4
external trigger sources and 4 for the valuenbfModules. Thus, nbrintTrigsPerModule would be 2 and
nbrExtTrigsPerModule would be 1, as expected for a DC240.

Internal triggers are associated to the input chanaetsfollow the same numbering rules.

External triggers follow similar rules, i.e. extTrig =c@rresponds to external trigger 1 of the first moduleT rgxt=
2 corresponds to external trigger 2 of the first modifilal{rExtTrigsPerModule > 1) or to external trigger 1 of the
second module etc. The externalTrigger 2 is the name usdwfBXd Bus Star Trigger.

The functionsAcgrsD1_configTrigSource and AcqrsD1_getTrigSource use the explicit trigger channel number,
with the internal trigger channel running from 1nbrintTrigs , and the external trigger running from -1 to —
nbrExtTrigs . Note that O is an invalid trigger source, resulting ir@or code.

The functionsAcqrsD1_configTrigClassand AcqrsD1_getTrigClassencode the trigger source in a 32-bit source
attern:

31 30 20 - 29 16 - 19 5-15 4 3 2 1 0
Ext1l | Ext2| Other Ext Trigs Module Other Int Trigg In5 In4 In3 In2 In1
[0] IN 1 Internal trigger channel 1
[1] IN 2 Internal trigger channel 2
[2..4] IN3,IN4, IN5 Internal trigger channels 3, 4, 5
[5..15] OTHER INT Other internal trigger channels within a module, up to 16.
TRIGS
[16..19] MODULE Module Number, running from 0 to (nbrModules — 1).

In single digitizers, this field must be zero.
In Multilnstrumentsthe trigger source number must be broken into a
module number and a trigger channel nunviaignin the module.

[20..29] OTHER EXxT Other external trigger channels within a module, up to 12.

TRIGS
[30] EXT 2 External trigger channel 2
[31] EXT 1 External trigger channel 1

In digitizers with trigger pattern capabilities, sevarager bits could be set simultaneously. However, no trigge
pattern capabilitiebetween different modulean be coded, i.e. only a single module in a Multilnstrurnantbe the
trigger source, although the source in the single module mightgzgtern. For these reasons, the module number
must be coded explicitly.

To translate a trigger channel numbggChan into a trigger source pattern, use the following code:

Programmer’s Guide Page 58 of 66

if (trigChan > 0) /I Internal Trigger

{
long moduleNbr = (trigChan - 1) / nbrintTrigsPerM odule;
long inputNbr = (trigChan - 1) % nbrintTrigsPerM odule;
srcPattern = (moduleNbr<<16) + (Ox1<<inputNbr);

}

else if (trigChan < 0) /I External Trigger

{
trigChan = -trigChan;
long moduleNbr = (trigChan - 1) / nbrExtTrigsPerM odule;
long inputNbr = (trigChan - 1) % nbrExtTrigsPerM odule;
srcPattern = (moduleNbr<<16) + (0x80000000>>input Nbr);

}

else
PROBLEM!

Note thatmoduleNbr and inputNbr start from 0. An ‘industrial strength' implementation shatddtain some
checks on the range tfgChan and/orinputNbr .

3.19. Special Operating Modes

Some Acqiris digitizers offer alternative operating nmdewhich are controlled with the function
AcgrsD1_configMode The default state of any digitizer isode = 0 andflags = 0, corresponding to theormal
digitizer operation, as described in the other sectionsi®fanual.

3.19.1.Frequency Counter

This is an option available for the DC140 and DC135 digtizk is implemented with a signal counter that counts
trigger signals from the user-requested channel. A tonater generates the user-programmed aperture time, during
which the measurement is performed.

The user-requested signal channel has to be programm#tkfekpected signal characteristics; the standard config
functions should be used to set the full-scale, couptifiget and trigger threshold. The HF trigger mode mayebe s
by the driver software on the basis of the user-suppiegt frequency value. In order to obtain the best redtis,
recommended to adjust the full scale and offset so that tlaythp expected input signal. In addition, the trigger
threshold should be set to approximately the center of thalsigitage range. Calls tAcqrsD1_configVertical
andAcqrsD1_configTrigClassare needed. If an external time base reference is dergsD1_configExtClock
should be called. If the totalize in gate functionalgydesired the source of the gate must be set with the fanctio
AcqrsD1_configControllO, with the parametersonnector= 1 (I/O A) or 2 (I/O B) andignal= 9. Note that when
this mode is in use the Enable trigger input (signal fa®gtionality of AcqrsD1_configControllO cannot be used.

The functionAcqrsD1_configFCountersets the parameters specific to the frequency measatem

AcgrsD1_configFCounter(instrID, channel, type, tar getValue, apertureTime,
0.0, 0);

Comments:
e Channel numbers run from 1 to the available number of sifa@inels in the digitizer.
» The valuetypeis O for Frequency, 1 for Period, 2 for Totalize by &iemd 3 for Totalize by Gate.

« ThetargetValueis an estimator of the expected result. If no egenim possible, use the value 0.0. This
value is only used to activate the HF trigger mode which dgtéme useable frequency range. By default,
the frequency range is extended except:

type Measurement Divide by 1
0 Frequency ifargetValueis smaller than 1 kHz (1000.0) and larger than 0.0
1 Period iftargetValueis larger than 1ms (0.001)
2 Totalize by Time always (the HF mode is never used)
3

Totalize by Gate always (the HF mode is never used)

Programmer’s Guide Page 59 of 66

e The apertureTimedefines the minimum time for a frequency measureméninéy be longer if the
frequency is very low!). In the Totalize by Time mode, tldug of apertureTimedetermines the time
window during which the input pulses are counted.

The frequency counter mode is set with the funcfiogrsD1_configMode with mode= 6.

After configuring the instrument parameters, the measurensemjuence is started with the function
AcqrsD1_acquire This function returns before the measurement is terednafhe user must wait until it is

terminated with the function&cqrsD1_acgDoneor AcqrsD1_waitForEndOfAcquisition. For the case of Totalize

by Gate the program must stop the acquisition by makiradl #octhe functiomAcqrsD1_stopAcquisition.

FC results can be readout with the functhagrsD1_readFCounter. The result is always a single double precision
number whose units are those appropriate fotygpeof measurement chosen.

3.19.2.'Start on Trigger’

The ‘Start on Trigger’ mode begins data recording apgn receipt of a trigger signal, and stops aftaSamples
data points are acquired. Not all digitizers are capafileis mode;

those that never have it are the DC110, DC240, DC265, DC270, abh@H-tiedigitzers ;
others (DP105, DP106, DP110, DP111, DP210, DP211, DP212) can hawmibption only.

It is useful in the special case where the samplitegisdessthan the maximum possible and where an optimum time
correlation between the trigger and the sampling clock is exdj(iypically when averaging waveforms). This mode
also requires that the trigger is availab&orethe waveform of interest.

In the ‘Normal’ mode, data recording begins at the toharming, with the functiomcqrsD1_acquire The trigger
occurs asynchronously to the sampling clock, and thugaMlirandomly anywhere within a sampling interval. gvh
averaging waveforms, this will result in an effectivendbaidth reduction since the waveforms are randomly esthift
with respect to each other by up to + %2 sampling interval

In ‘Start on Trigger’ mode, the trigger occusforerecording starts. It still occurs asynchronously with respec
the internal reference clock (which é&ways running). However, if the requested sampling rate is legs tia
internal reference clock frequency (e.g. 100 MS/s, whiée dlock runs at 500 MHz), then the time correlation
between the trigger and the effective sampling clockiikinvt % internal reference clock time intervabt + %2
sampling interval. Therefore when averaging, the bantiwieduction will be less than in the ‘normal’ mode. In
general, the internal reference clock runs at the uppendrey shown for the model-dependent “Input Frequency
range” shown in the table of section 3.1#xernal Clock (Continuous).

The valuedelayTime in the functionAcqrsD1_configHorizontal is ignored. As usual, the digitizer requires some
memory overhead for additional samples. The funcédagrsD1_bestNominalSamplesreturns the maximum
number of available samples.
Use this code to use the ‘Start on Trigger’ mode:

AcgrsD1_configXXX(..); /I configure other parameters

AcgrsD1_configMode(instriD, 0, 0, 1);

AcqrsD1_acquire(instriD);

AcqrsD1_waitForEndOfAcquisition(instrID, timeout);

/I Read out data etc. before calling again “AcqrsD1 _acquire”

Note that the functioAcqrsD1_acquireis still needed. However, it behaves somewhat differéntlizat is doesiot
start data recording but waits until a trigger signaéteived.

Due to some circuit delays, the waveform recording stgpsoximately 20ns after the receipt of the trigger signal.
Furthermore the first data points may be invalid. For the T@G2amily, this means that the first 8 ns worth of data
should be ignored for sampling rates 4 GS/s > SR > 500 MS/s andstheriis, 16 points, for SR = 4 GS/s.

3.19.3. ‘'Sequence Wrap’

The normal operation of the digitizer requires that dpstecording waveforms when the pre-defined number of
segments has been acquired. ThisSegmentstriggers are needed to acquire the requested number of segments
into the same number of different memory sections. rAflte acquisition has terminated, all of the waveform
segments are finally available for readout.

The ‘Sequence Wrap’ mode also pre-defines the desirederuwhilifferent memory sections, but it permits aydar
number of triggers. After the firstorSegmentswaveform segments are acquired, the digitizer ‘wrapsund to the
first memory segment and keeps on recording waveforms. &fiseace can go on indefinitely, since no hardware
condition will stop it. The only way to terminate this imife loop is to stop it with the function

Programmer’s Guide Page 60 of 66

AcgrsD1_stopAcquisition This mode is available in all digitizers except the ULO0FBMILY and the 10-bit-
FAMILY.

This mode is useful when only the last N out of many oetes of a signal are of interest. E.g. if you sefoch
rare event out of many occurrences, and you only camndiet its interesafter the event has occurred, then the
‘Sequence Wrap’' mode is applicable.

While this mode even ‘works’ fanbrSegments= 1, in practice the value abrSegmentsshould be at least 3. It is
important to note that after the acquisition of a segntbetdigitizer automatically advances to the next memory
section and immediately (with a dead time of nus) starts recording into it. Thus, usually the very last mgmor
segment used will necessarily contain uninteresting datee it will not be stopped with a trigger, but be terngda
with the software commaniicqrsD1_stopAcquisition
Use this code to use the ‘Sequence Wrap’ mode:

AcqrsD1_configXXX(..) ; /I configure other parameters

AcqrsD1_configMode(instrID, 0, 0, 2);

AcgrsD1_acquire(instriD);

AcgrsD1_stopAcquisition(instriD);

The time at which the sequence is terminated with the ibmétcgrsD1_stopAcquisition depends on an external
event, e.g. operator intervention.

When reading the segments, the segment number should take welues 0,..nbrSegmentsl). They correspond
to the memory section numbers in the digitizent, the time order of the acquired segments.

Example: ifnbrSegments= 8, the time order of the acquired segments mightiepefnding on when the sequence
was stopped) 5, 6, 7, 0, 1, 2, 3, 4. Here, the ‘oldest good’ s¢dsnie ' segment, followed by theé"s 7", g", 1

etc. The ‘youngest’ useful segment is tH€ éhe, while the 8 or 4" segment corresponds to the segment that was
being recorded when the stop-command was received. "Theginent (in this example) usually does not contain any
useful data. However, depending on the timing of the triggéhsrespect to the acquisition stop it could be that the
3% segment has the corrupted data and this #alid.

3.20. Readout of Battery Backed-up Memories

Acqiris digitizers with the battery back-up option pernetaining acquired waveforms during periods of tinfew
the power might be interrupted.

3.20.1.Preparations before Power-Off

A digitizer only remembers the digitized data array, butaiobf the parameters that are needed to interpret the
waveform. These parameters are normally retaineceidtiver, but are typically lost when power is lost or witee
controlling application is terminated.

It is therefore necessary for the application to trantfe relevant parametevsfore power-off, typically to a disk,
in such a way that they are again available when restatim@pplication after power is restored. The following
parameters must be transferred to persistent storageadh instrument:

» Parameters ohcqrsD1_configHorizontal, i.e. sampling interval and delay
» Parameters oAcqrsD1_configMemory, i.e. number of samples and number of segments

» Parameters ofAcqrsD1_configVertical, i.e. Full Scale and offset (the coupling is not releNarfor each
channel of interest

* Two calibrated delay parameters, as obtained with theiumcalls
Double delayOffset, delayScale;
Acqgrs_getinstrumentinfo(ID, "DelayOffset", &delayO ffset);
Acqgrs_getinstrumentinfo(ID, "DelayScale", &delaySc ale);

The functionsAcgrs_getinstrumentinfo should be called just before the start of the adipris i.e. before calling
AcqrsD1_acquire but after allAcgrsD1_config... functions.

3.20.2.Recovery after Power-Off
In order to read a battery backed-up waveform, you need to ex@special sequence of initialization functions

1. Initialize the digitizer with the following function call:

Programmer’s Guide Page 61 of 66

Acqrs_InitWithOptions(resourceName, false, false, " CAL=FALSE", &instrID);

It is important to specify “CAL=FALSE" to prevent anglibration in the digitizer, which would destroy any
retained data.

2. Call the functionsAcqrsD1_configHorizontal, AcgrsD1_configMemory, AcqrsD1_configVertical (for each
channell!) with the same parameters that were usee iortginal acquisition.

3. Call the functionAcqrsD1_restorelnternalRegisters with the parameterdelayOffsetanddelayScaleln case
these parameters are not available (e.g. due to esofterare versions), you should use the values —20.0e-9 for
delayOffsetand 5.0e-12 fodelayScale

4. Call the functionAcqrsD1_readDatato read the battery backed-up data.

Failing to restore the originally used digitizer parametaey result in erroneous data. After data recovery, and
before using the digitizer for any new acquisitions, ddoiget to calibrate the instrument with the function
Acqrs_calibrate.

3.21. Reading the Instrument Temperature

The temperature of an instrument can be obtained with the fotjovode:
long temperature; /l will be in degrees C
Acqrs_getinstrumentinfo(instriD, "Temperature", &te mperature);

When multiple digitizers are combined via AS bus to a Nhdtrument, use the stringSemperature 0",
"Temperature 1" ... to refer to the individual modules.

NOTE: The returned temperature value corresponds to the ambiepet@ture on the main printed-circuit board,
typically near the timebase circuit. It cannot represshpossible temperature values that are present on theitirc
Values= 60°C indicate that the circuit is near its operational limihcha cooling failure occurred or better cooling
should be installed.

We recommend keeping the temperature as low as possibleasiié® reduction in circuit temperature is expected
to improve the mean-time-between-failures (MTBF) by&tdr of 2.

We also recommend reading the temperature when the irsttusnstopped. The read operation may generate small
signal perturbations through cross talk, if it is exeduvhile an acquisition is in progress.

3.22. Building applications that can Hibernate

The Acgrs_powerSystem function was implemented to bedctden a routine that treats Windows events. The code
below shows a standard treatment of such events:
switch (winMsgP->message)

{
case WM_POWERBROADCAST:
switch (winMsgP->wParam)

{

case PBT_APMRESUMEAUTOMATIC:
status = Acqrs_powerSystem(AgPowerOn, 0);
break;

case PBT_APMSUSPEND:
status = Acqrs_powerSystem(AgPowerOff, 0);
break;

default: // There are other power events, b ut we only show these two.
break;

}

break;

default:
break;

}

If such code is not available the Acqiris devices will b@tuseable when the PC becomes active after hibemnati

Programmer’s Guide Page 62 of 66

4. Appendix A: Estimating Data Transfer Times

The time to transfer a waveform may be a significant gathe execution time of a program, and thus becomes an
important design consideration for new applications. We prelserg a simple timing model with the aim of
predicting the transfer time for digitizer readout as a fonctif the number of segments, number of samples, CPU
speed and the operating system.

4.1. Principles & Formulas

The functionAcqrsD1_readDatafor readMode = 0 executes a direct waveform transfen the digitizer memory

to the user-allocated buffer, for a single segment ame tSince direct-to-memory access (DMA) is used,ithtbe
most time-efficient method for segments of 10'000 or morepkEmHowever, each segment requires its own DMA
setup. When segments are very short, the transfer odestads to dominate the overall transfer time. After the
transfer the data in the buffer is ready to be used.

The functionAcqrsD1_readData for readMode = 1 (ReadModeSeqW) reduces the overhead tirtrartsferring
with a single DMA a complete digitizer memory imagethe host computer memory. The memory image is
composed of a number of segments, each of whicltiic@alar buffer. The first data point of interest in the circular
buffer may be anywhere, and its position usually changes rapdmtween acquisitions. Thus, after the DMA is
terminated, the driver must copy data from the image tditlaé¢ linear buffer for each segment. This method is
therefore only interesting for relatively short segmeHt®wvever, if timing is not an important considerationffers

the convenience of a single function call for the comtetesfer of a waveform sequence.

Formulas for estimating the transfer timequare:

* AcqgrsD1_readDatafor readMode =0
T, =M [Ovhd,,,, + M [N [Xfr
* AcqgrsD1_readDatafor readMode = 1 (ReadModeSeqW)
T, = Ovhd,,,, + M [Ovhd, ., +M (N + Extra) Xfr + M [N [Cpy

with the following definitions:

M Number of segments
N Number of samples per segment
Xfr Transfer time per sample jrs, typically 0.01 ??

Ovhd,,,, DMA overhead time (per segment)jis

Ovhd,., Circular buffer analysis overhead time (per segmentysin
Extra Number of 'overhead' data points per segment

Cpy Time to copy a sample jus

The formulas above assume thatandN correspond to the number segments and samples set with thierfunct
AcgrsD1_configMemory. If fewer segments or samples are transferred, itheng might be somewhat less
favorable than estimated by the formula.

1. The transfer timeXy is typically 0.009 to 0.0is (9 - 10 ns) per 8-bit sample for digitizers directly itese on
the PCI bus of the host computer or connected through t8eB&B interface (Acqiris model number 1C200). If
a digitizer is connected through the National Instruments Biiterface Xy is typically 0.012us (12 ns). Of
course, these times would get larger, if there was caditdeadditional 1/0 traffic on the PCI bus.

2. The DMA overhead tim®vhdyy, is approximately (50'00asec) / (Pentium CPU speed in MHz). Thus, for a
250 MHz PentiunOvhdbya is ~ 200us, and for a 500 MHz Pentium it is ~ 106.
With applications running under Windows @vhd,ya has been observed to be ~ 20% lower.

3. The circular buffer analysis overhead ti@ehd,ger is ~ (2'500us) / (Pentium CPU speed in MHz). Thus, for a
250 MHz PentiunOvhd,ger is ~ 10us, and for a 500 MHz Pentium ~USs.

4. An Extra number of data samples must be transferred to the biwgiuter with the memory image. It depends
on the sampling interval (in ns) and on the digitizer typeetdee some rough values:

Programmer’s Guide Page 63 of 66

Extra Type
300 / sampinterval + 98 digitizers with< 1 GS/s maximum sampling rates

300/ samplnterval + 194 digitizers with 2 GS/s maximum pdgng rates or DC271-FAMILY
instruments set for a combine channel mode allowing 2 GS/

300/ samplnterval + 386 DC271-FAMILY instruments setd@r GS/s combine channel mode

5. The copying timeCpyper 8-bit sample is ~ (3s) / (Pentium CPU speed in MHz).
Thus, for a 250 MHz Pentiu@pyis ~ 0.02us, and for a 500 MHz Pentium it is ~ 0,04

Benchmarks were run on 266 and 550 MHz Pentiums, running unideoWs 98 and NT. The observed transfer
times agreed with the formula within better than 20%.

» dataType=3
Add the conversion tim&; for conversion from ADC codes to Volts, T or T, respectively:

T, =M [N [Conv

whereConvis the conversion time per sample in microseconds~I{85us) / (Pentium CPU speed in
MHz). Thus, for a 250 MHz Pentiu@onvis ~ 0.14us, and for a 500 MHz Pentium ~ 0.03.

4.2.Examples
(A) DP210 in a 800 MHz Pentium:

Transferring single records of 100'000 samples, recorde &2

M =1 N=100000 Xfr =001 Cpy=0.00625
Ovhd,,,, =625 Ovhd,, =3.125 Extra=480+192=672

T, = M [Ovhd,,,, + M [N [Xfr = 625+1000=1063us

T, = Ovhd,,,, + M [Ovhd, ., + M [(N + Extra)[Xfr + M [N [Cpy
= 625+ 3.125+100672[0D01+100000[0.00625= 1698us

It is therefore more favorable to use the funcagrsD1_readDatafor readMode = 0.

Transferring 100 segments of 1000 samples, recorded at 2 GS/s

M =100 N =1000 Xfr=001 Cpy=0.00625
Ovhd,,,, =625 Ovhd, g, =3125 Extra=480+192=672

T, = M [Ovhd,,,, + M [N [Xfr =100[62.5+100[1000 001= 725Qus
T, = Ovhd,,,, + M [Ovhd, ., + M [(N + Extra)[Xfr + M [N [Cpy
= 62.5+10008.125+1001672[D01+1001000[D.00625= 26725

The functionAcqrsD1_readDatafor readMode = 1 (ReadModeSeqW) is about 2.7 timesrfaste

Programmer’s Guide Page 64 of 66

(B) DC270 connected to a 500 MHz Pentium with a MXI-3 intdace:

Transferring single records of 100'000 samples, recorde@Da¥1$/s:

M =1 N =100000 Xfr=0.012 Cpy= 001
Ovhd,,,, =100 Ovhd, ., =5 Extra=24010+96=120

T, =M [Ovhd,,,, + M [N [Xfr =100+1200=130Qus

T, =Ovhd,,,, + M [Ovhd, ., + M [(N + Extra)[Xfr + M [N [Cpy
=100+5+100120[0.012+100000D01 = 2306us

It is therefore more favorable to use the funcéagrsD1_readDatafor readMode = 0.

Transferring 1000 segments of 500 samples each, recatr&@ MS/s:

M =1000 N =500 Xfr =0012 Cpy= 001
Ovhd,,,, =100 Ovhd,,, =5 Extra=240/2+96=216

T, = M [Ovhd,,,, + M [N [Xfr =100000+6000= 10600045

T, =Ovhd,,,, + M [Ovhd, ., + M [(N + Extra)[Xfr + M [N [Cpy
=100+100005 +1000[716[0.012+1000500D01 = 186925

The functionAcqrsD1_readDatafor readMode = 1 (ReadModeSeqW) is about 5 times faster.

4.3. Comparison Chart for Typical Transfers

Time in ms 250 MHz Pentium 500 MHz Pentium 800 MHz Pentium
of Samples/ T, T, R Ty T, R Ty Ts R
Segments Segment

1 200 0.20 0.22 1.10| 0.10 0.12 1.13| 0.06 0.08 1.17
1 1K 0.21 025 1.17| 0.11 0.13 1.20| 0.07 0.09 1.22
1 10K 0.30 052 1.72| 020 031 156| 0.16 0.23 1.45
1 100 K 1.20 322 268| 110 211 192| 1.06 170 1.60
1 1M 10.2 30.2 296| 101 20.1 1.99| 100 16.3 1.62
10 200 202 043 0.21| 102 026 0.25| 0.65 0.19 0.30
10 1K 210 0.67 0.32| 110 0.42 0.38| 073 032 045
10 10K 3.00 337 1.12| 200 222 1.11| 163 179 1.10
10 100 K 12.0 304 253 11.0 20.2 1.84| 10.6 16.4 1.54
10 1M 102 300 2.94 101 200 1.98| 101 163 1.62
100 200 20.2 247 0.12| 10.2 167 0.16| 645 137 0.21
100 1K 21.0 487 0.23| 11.0 3.27 0.30| 7.25 2.67 0.37
100 10K 30,0 319 1.06| 200 213 1.06| 16.2 17.3 1.06
100 100 K 120 302 2.52 110 202 1.83| 106 164 1.54
1000 200 202 229 0.11 102 15.8 0.16| 645 13.2 0.20
1000 1K 210 46.9 0.22 110 31.8 0.29| 725 26.2 0.36
1000 10 K 300 317 1.06 200 212 1.06| 163 170 1.06
8000 200 1616 182 0.11 816 126 0.15| 516 105 0.20
8000 1K 1680 374 0.22 880 254 0.29| 580 209 0.36
8000 2K 1760 614 0.35 960 414 0.43| 660 339 0.51

Programmer’s Guide Page 65 of 66

Comments:

 We assume a 2 GS/s digitizer running at the highesplgagirate, direct connection of the digitizer to thethos
PCI bus or through the SBS-Bit3 interface (Acqiris model nurf®200), Windows NT.
- R=T,/T,

If R> 1.0, aloop oveAcqrsD1_readDatafor readMode = 0 is faster th@etqgrsD1_readDatafor readMode =
1 (ReadModeSeqW).

Time in ms 866 MHz Pentium
of Samples T, T, R
Segments Segment

1 200 0.03 0.04 1.22
1 1K 0.04 0.05 121
1 10K 0.12 0.17 1.45
1 100 K 098 212 2.15
1 1M 9.85 25,5 259
10 200 0.3 0.14 0.46
10 1K 0.35 0.27 0.76
10 10K 1.21 161 1.33
10 100 K 11.6 16.2 1.40
10 500 k 454 94.4 2.08
100 200 3.00 0.92 031
100 1K 427 2.37 0.56
100 10K 16.1 15.0 0.93
100 50 K 447 742 1.66
1000 200 47.2 13,5 0.29
1000 1K 443 23.4 0.53
1000 5K 85.9 87.8 1.02
8000 200 457 64.8 0.14
8000 500 496 202 0.41
Comments: Measured under the Linux OS.

Programmer’s Guide Page 66 of 66

